Integrated Research Results on Hydrobiosedimentary Processes in Estuaries

R&D Technical Report FD1905/TR3
Defra / Environment Agency
Flood and Coastal Defence R&D Programme

Integrated Research Results on
Hydrobiosedimentary Processes in Estuaries

Final Report of the Estuary Process Research Project
(EstProc): Algorithms and Scientific Information

R&D Technical Report FD1905/TR3

Authors: Estuary Process Consortium for the Fluvial,
Estuarine and Coastal Processes Theme:

Produced January 2006
Statement of use
This report provides information for Defra, the Environment Agency and their consultants about estuarine processes and constitutes an R&D output from the Joint Defra / Environment Agency Flood and Coastal Erosion R&D Programme. It is intended for use by experienced modellers who are able to exercise judgement on the applicability of the work to specific situations. Reliance on the information in this report is not a substitute for the necessary expertise or site specific studies and investigations. This report is a contribution to research generally and it would be imprudent for third parties to rely on it in specific applications without first checking its suitability. Various sections of this report rely on data supplied or drawn from third party sources. The members of the EstProc Consortium accept no liability for loss or damage suffered by Defra or the Environment Agency or third parties as a result of errors or inaccuracies in such third party data.

Dissemination status
Internal: Released internally
External: Released to public domain

Keywords: estuary, geomorphology, sedimentary processes

Research contractor: Richard Whitehouse, HR Wallingford HR Wallingford Ltd, Howbery Park, Wallingford, Oxon, OX10 8BA, UK Direct dial: +44 (0)1491 822434 e-mail: r.whitehouse@hrwallingford.co.uk

Project Officer: Jonathan Rogers, Mouchel Parkman.

Publishing organisation
Defra – Flood Management Division
Ergon House,
Horseferry Road
London SW1P 2AL
Tel: 020 7238 3000 Fax: 020 7238 6187
www.defra.gov.uk/environ/fcd

© Crown Copyright (Defra): March 2006
Copyright in the typographical arrangement and design ersts with the Crown. This publication (excluding the logo) may be reproduced free of charge in any format or medium provided that it is reproduced accurately and not used in a misleading context. The material must be acknowledged as Crown copyright with the title and source of the publication specified. The views expressed in this document are not necessarily those of Defra or the Environment Agency. Its officers, servants or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance on views contained herein.

Published by the Department for Environment, Food and Rural Affairs. Printed in the UK, March 2006 on recycled material containing 80% post-consumer waste and 20% totally chlorine-free virgin pulp.

PB No. 11546
Collaboration Statement
The report was prepared by the EstProc Consortium comprising: HR Wallingford (lead), Proudman Oceanographic Laboratory, Professor Keith Dyer / University of Plymouth, St Andrews University, Gatty Marine Laboratory (Sediment Ecology Research Group), ABP marine environmental research, WL | Delft Hydraulics, Plymouth Marine Laboratory, University of Cambridge, Cambridge Coastal Research Unit, University of Southampton, School of Ocean and Earth Sciences, Digital Hydraulics Holland B.V., and Centre for Environment, Fisheries and Aquaculture Science.
SUMMARY

The EstProc project has delivered fundamental new research on estuarine hydrodynamics, sedimentology and ecological processes. More than 30 algorithms are presented under one of the following 9 headings. Each one is denoted with a reference code, EP1 through EP30, and some are subdivided further. In summary:

- Modelling of waves in estuaries contains algorithms EP1 to EP6
- Prediction of the impact of extreme events and major anthropogenic influences contains algorithms EP7 to EP9
- Results obtained from the interrogation of data contains algorithms EP10 to EP12
- Representation of near bed stresses contains algorithms EP13 to EP15
- Transport of mixed sediments contains algorithm EP16
- Understanding of the sediment transport profile contains algorithms EP17 to EP19
- Understanding of general sedimentary processes contains algorithms EP20 to EP26
- Biological process parameters that effect stability, erodibility and deposition of sediments contains algorithms EP27 to EP29
- Methodology for including effect of biological processes into morphological models contains algorithms EP30 to EP31

The algorithms presented are at two levels of development:

1. Concepts or derivations based on data or theory; and,
2. Concepts or derivations based on data or theory that have been implemented and tested against other data.

In each case the scientific background and range of validity of the algorithm is discussed. Many of these algorithms can be implemented into numerical models. Example applications which have used some of the new algorithms are discussed in the associated EstProc Report FD1905/TR2.

For more information contact the project leader, Dr Richard Whitehouse at HR Wallingford (r.whitehouse@hrwallingford.co.uk or tel: +44 (0)1491 835381), or contact the originating organisation responsible for the individual algorithm.

More information on the project and a copy of this report can be obtained from the website: www.estproc.net or from the Defra website: www.defra.gov.uk

Key reports produced by the project

CONTENTS

SUMMARY

1. **Introduction**
 1

2. **Algorithms and methods**
 3

 2.1 Summary of algorithms
 3

 2.2 Modelling of waves in estuaries

 2.2.1 **EP 1** - Algorithm for single point wave generation and transformation models (HRW-Tozer)
 5

 2.2.2 **EP2** - Parametric modelling of waves in estuaries (POL - Wolf)
 8

 2.2.3 **EP3** - Algorithms for vegetated marsh surface friction coefficient (CCRU-Turner)
 18

 2.2.4 **EP4** - Algorithm - a model for wave dissipation due to flexible vegetation (DHH-Booij)
 24

 2.2.5 **EP5** - Algorithm for vegetation friction factor (WLD-de Vries)
 27

 2.2.6 **EP6** - Algorithm for relationship between intertidal surface properties and H/h ratio limit (CCRU- Möller)
 33

 2.3 Prediction of the impact of extreme events and major anthropogenic influences

 2.3.1 **EP7** - Algorithm for modelling flow in dendritic systems – porosity method (HRW-Spearman)
 36

 2.3.2 **EP8** - Algorithm for modelling flow in dendritic systems – Raster model (ABP-Swift)
 40

 2.3.3 **EP9** - Algorithm for the impact of Global Climate Change and Extreme Events in Estuaries (POL-Prandle)
 42

 2.4 Results obtained from the interrogation of data

 2.4.1 **EP10** - Algorithms for salinity, velocity, SPM, and mudflat characteristics (PML-Uncles)
 47

 2.4.2 **EP11** - Algorithm for the effects of suspended sediment on turbulence within an estuarine turbidity maximum (UOP-Dyer)
 53

 2.4.3 **EP12** - Algorithm for the Dimensional Relationships of Estuaries (UOP-Dyer)
 56

 2.5 Representation of near bed stresses

 2.5.1 **EP 13** - Algorithm for wave-current bed shear stresses (HRW – Soulsby)
 60

 2.5.2 **EP14** - Algorithm for bed roughness with Moveable Bed Model (ABP – Harris)
 67

 2.5.3 **EP15** - Algorithm for representation of near bed stresses in an annular flume (PML – Widdows)
 69

 2.6 Transport of mixed sediments

 2.6.1 **EP16** - Algorithm for modelling sediment mixing in estuaries (WLD – Winterwerp)
 71

 2.7 Understanding of the sediment transport profile

 82
2.7.1 EP17 - Algorithm for understanding of the sediment transport profile (HRW – Soulsby) 82
2.7.2 EP18 - Algorithm for mass settling flux of flocculated cohesive sediment (Plymouth – Manning) 87
2.7.3 EP19 - Algorithm for Generic Models – 1-D single point, 2-D cross-sectional (POL – Lane) 92

2.8 Understanding of general sedimentary processes 95
2.8.1 EP20 - Algorithm for modelling sediment mixing in estuaries (WLD – Winterwerp) 95
2.8.2 EP21 - Algorithm for Gravitational circulation (WLD – Winterwerp) 103
2.8.3 EP22 – Algorithm for transport by sediment-induced density currents (WLD – Winterwerp) 105
2.8.4 EP23 - Algorithm for Stress History (Exposure Correction) on sand sediment threshold (SOES - Paphitis) 109
2.8.5 EP24 - Algorithm for day-night stability of sandy sediment (SOES – Friend) 111
2.8.6 EP25 - Algorithm for selecting Bed Update strategies in estuary models (WLD – Roelvink) 112
2.8.7 EP26 - Algorithm on Estuarine characteristics (POL – Prandle) 115

2.9 Biological process parameters that effect stability, erodibility and deposition of sediments 120
2.9.1 EP27 - Algorithm for Sediment-Biology Interaction (ABP – Jackson) 120
2.9.2 EP28 - Algorithm for biological process parameters that affect stability, erodibility and deposition of sediments (PML – Widdows) 123
2.9.3 EP29 - Algorithm for the objective definition of a biostabilisation index for sandy intertidal flats using the Cohesive Strength Meter (CSM) (SOES – Friend) 132

2.10 Linkages between biological processes and morphology 134
2.10.1 EP30 - Algorithm for relationship between incident wave energy and marsh edge configuration (CCRU – Moeller) 134
2.10.2 EP31 - Algorithm for relationship between saltmarsh accretion, distance from creek and surface elevation in minerogenic marshes (CCRU – Spencer) 138

Appendices
Appendix 1 Project bibliography 143
Appendix 2 Contact details for EstProc research project team 153
1. INTRODUCTION

The EstProc project FD1905 has delivered fundamental new research on estuarine hydrodynamics, sedimentology and ecological processes. This report has been written by the EstProc Consortium to present the wide range of algorithms produced during the research programme, 2001-2004. It was prepared as part of the deliverable requirements of the Estuary Processes Research Project funded by Defra under contract FD1905 within the Defra and Environment Agency Joint Flood and Coastal Processes Theme. EstProc is one of the ERP2 projects.

Further details of the project are presented in two other reports:

Integrated Research Results on Hydrobiosedimentary Processes in Estuaries
R&D Technical Report prepared by the Estuary Process Consortium for the Fluvial, Estuarine and Coastal Processes Theme
Report No FD1905/TR2 – Synthesis Report
• This describes the scientific achievements of the project and presents example applications of the new algorithms.

and

Integrated Research Results on Hydrobiosedimentary Processes in Estuaries
R&D Technical Report prepared by the Estuary Process Consortium for the Fluvial, Estuarine and Coastal Processes Theme
Report No FD1905/TR4 – Metadata Report
• This catalogues the metadata from input data used in the project.

The structure of the present report is as follows:

Chapter 2 introduces and presents more than 30 algorithms developed during the research project.

The algorithms are presented under 9 headings:
2.1 Modelling of waves in estuaries
2.2 Prediction of the impact of extreme events and major anthropogenic influences
2.3 Results obtained from the interrogation of data
2.4 Representation of near bed stresses
2.5 Transport of mixed sediments
2.6 Understanding of the sediment transport profile
2.7 Understanding of general sedimentary processes
2.8 Biological process parameters that effect stability, erodibility and deposition of sediments
2.9 Methodology for including effect of biological processes into morphological models

The project was not contracted to produce source code or .exe files so they were not provided. The project took the more flexible approach of providing algorithms that
were not platform specific which could then be coded up by individual modellers on their specific platform.

For more information contact the project leader, Dr Richard Whitehouse at HR Wallingford (r.whitehouse@hrwallingford.co.uk or tel: +44 (0)1491 835381), or contact the originating organisation/contact person responsible for the individual algorithm, indicated in the title line of the algorithm:

HRW - HR Wallingford
POL - Proudman Oceanographic Laboratory
UOP - University of Plymouth
GML - St Andrews University, Gatty Marine Laboratory (Sediment Ecology Research Group),
ABP - ABP marine environmental research,
WLD - WL | Delft Hydraulics,
PML - Plymouth Marine Laboratory,
CCRU - University of Cambridge, Cambridge Coastal Research Unit,
UOS - University of Southampton, School of Ocean and Earth Sciences,
DHH - Digital Hydraulics Holland B.V., and
CEFAS - Centre for Environment, Fisheries and Aquaculture Science.

More information on the project and a copy of this report can be obtained from the website: www.estproc.net or from the Defra website: www.defra.gov.uk
2. ALGORITHMS AND METHODS

This chapter presents the key scientific outputs of the project which are new algorithms and methods for implementation in numerical models of estuarine processes and associated analysis. It begins with a section summarising the aim, format and contents. The algorithms presented are at two levels of development:

1. Concepts or derivations based on data or theory; and,
2. Concepts or derivations based on data or theory that have been implemented and tested against other data.

Where possible the following information has been presented, especially for level 3 algorithms.

- The name and aim of method/algorithm;
- The scientific background/ justification/validation;
- Information on how the work in EstProc has improved our understanding of this topic;
- Statement as to how the method/algorithm be implemented;
- Statement of the algorithm or method in formulaic form suitable for implementation in a model - specifying inputs/outputs/limits of applicability/provide graphical information to justify algorithm;
- Specification of any gaps in knowledge identified

Some of the algorithms remain qualitative in nature.

The algorithms are presented under each of the 9 topics outlined in chapter 1. For ease of identification each algorithm, regardless of whether it is level 1, 2 or 3, has been assigned a unique code, EP1 through to EP30 with EP signifying EstProc.

Unless otherwise stated, standard SI units are expected for the quantities described.

The results are presented with best intentions to provide methods for use in estuarine studies but reliance on the information in this report is not a suitable substitute for necessary expertise and site-specific studies and investigations. Third parties should not rely on the algorithms without fully testing and validating them.

2.1 Summary of algorithms

The following table illustrates the state of development of the algorithms in the following sections:
<table>
<thead>
<tr>
<th>Algorithm Number</th>
<th>Short title</th>
<th>Originator</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP1</td>
<td>Waves in estuaries during tides</td>
<td>HRW</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP2</td>
<td>Waves in estuaries</td>
<td>POL</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP3</td>
<td>Waves, friction and vegetation</td>
<td>CCRU</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>EP4</td>
<td>Waves, dissipation and vegetation</td>
<td>DHH</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP5</td>
<td>Vegetation friction factor</td>
<td>WLD</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>EP6</td>
<td>Wave height limit on flats/marsh</td>
<td>CCRU</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP7</td>
<td>Porosity method for flow</td>
<td>HRW</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP8</td>
<td>Raster method for flow</td>
<td>ABP</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP9</td>
<td>Analytical relations for estuaries</td>
<td>POL</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP10</td>
<td>Estuarine parameters from data</td>
<td>PML</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP11</td>
<td>Turbulence and sediment mixing</td>
<td>UOP</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP12</td>
<td>Dimensional relations of estuaries</td>
<td>UOP</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP13</td>
<td>Wave-current bed shear stress</td>
<td>HRW</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP14</td>
<td>Moveable bed roughness</td>
<td>ABP</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP15</td>
<td>Near bed stresses</td>
<td>PML</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP16</td>
<td>Mixed sediment transport</td>
<td>WLD</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP17</td>
<td>Analytical sediment profile</td>
<td>HRW</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP18</td>
<td>Mass settling flux flocculated seds</td>
<td>UOP</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP19</td>
<td>1-D and 2-D generic models</td>
<td>POL</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP20</td>
<td>Sediment mixing in estuaries</td>
<td>WLD</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP21</td>
<td>Gravitational circulation</td>
<td>WLD</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP22</td>
<td>Sediment-induced density currents</td>
<td>WLD</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP23</td>
<td>‘Stress exposure’ correction for sand</td>
<td>SOES</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP24</td>
<td>Day-night stability of sandy seds</td>
<td>SOES</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP25</td>
<td>Bed update strategy selection</td>
<td>WLD</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP26</td>
<td>Characteristic estuarine values</td>
<td>POL</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP27</td>
<td>Sediment-biology interaction</td>
<td>ABP</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP28</td>
<td>Biological process parameters</td>
<td>PML</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP29</td>
<td>Index for biological stabilisation</td>
<td>SOES</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP30</td>
<td>Waves and marsh edge configuration</td>
<td>CCRU</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EP31</td>
<td>Accretion on marshes with creeks</td>
<td>CCRU</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Modelling of waves in estuaries

2.2.1 EP 1 - Algorithm for single point wave generation and transformation models (HRW-Tozer)

Aim To improve the representation of waves in estuaries with regard to changes in wave activity occurring over the tide

Scientific background
Waves in estuaries can comprise of locally generated waves and more distantly generated waves that propagate into the estuary from offshore. Both sets of waves are subject to a wide range of physical processes that makes their prediction difficult. Waves generated within the estuary will depend on the growth area, which may change shape during the tidal cycle, and the wind. These locally generated waves, and those that are generated more distantly that propagate into the estuary, will be subject to the processes of shoaling, refraction, reflection, diffraction, blocking, white-capping, and depth induced breaking. All these processes will depend on the currents and water levels associated with the tides.

There are, presently, a wide number of computational wave models that represent some of these processes, but none that represent all. Recent advances over the last 10 years has led to the development of a group of phase averaged spectral wave models that can be regarded as the present state of the art in coastal area wave models. These models are based on the research and development of models devised for wave modelling on a global scale, but with considerable research and development, that is ongoing, to incorporate representations of the shallow water processes characteristic of the coastal environment. These types of models are computationally intensive and in prediction of a long term time series of wave conditions remain impracticable. Simpler models exist, that are sufficiently computationally efficient, but at the expense of not representing as many of the physical processes.

The algorithm below describes a method for improving the representation of changes due to the tidal cycle in simple point wave models.

Improvement in understanding
The new method improves on existing methods because:

- it can improve the accuracy of the wave predictions, by accounting for the change in generation area occurring over the tide

But:

- there is an associated increase in setup and run time which will be a function of the number of water levels in the tidal cycle considered.

Implementation
The algorithm is based on point models such as HINDWAVE that require only fetch lengths, wind speeds and directions as input.
Algorithm

INPUTS
Time series of water levels at times corresponding to model input wind data
Bathymetric detail over generation area.

OUTPUTS
Time series of wave predictions for different states of the tide that, dependent on water level, can be combined to provide a more representative prediction of wave conditions at a point.

To account for locally generated waves.
1. Measure fetch lengths radially from the point of interest to the intersection with land.
2. For fetches that extend over shallow banks their length should be restricted beyond the shallow banks so that the broken wave height can not be exceeded. Estimates of the broken wave height of 0.55 times the water depth and fetch lengths can be approximated from the standard JONSWAP curves published in a variety of sources.
3. Run the wave generation model for a time series of wind conditions to produce a set of time series of predicted waves.
4. Repeat steps 1 to 3 for a range of tidal levels to produce a time series of predicted wave conditions.
5. Combine the set of time series of predicted wave conditions dependent on the appropriate water level to produce a final time series of predicted locally generated wave conditions.

To account for the transformation of more distantly generated waves into the area of interest
1. Modify the wave model grid by introducing islands in areas where significant energy dissipation due to wave breaking is expected to occur, i.e. where the significant wave height of the offshore waves are reduced to a negligible amount or are small compared with the locally generated significant wave height.
2. Run the wave transformation model using the time series of offshore wave conditions.
3. Repeat steps 1 and 2 for different water levels.
4. Combine the sets of time series of predicted transformed waves from offshore dependent on water level to produce a final time series of predicted transformed wave conditions.
5. Combine the time series of locally generated and transformed offshore wave conditions on an energy basis.

Limits of applicability
The algorithm only applies to models that do not already include energy dissipation due to wave breaking.

Validation
The effectiveness of the algorithm was investigated using a HINDWAVE-TELURAY model of the Outer Thames Estuary (Tozer et al, 2004). Model results were compared against a reference data set based on measured wave conditions at a single point. For
The Outer Thames Estuary, HINDWAVE-TELURAY resulted in predictions of significant wave height and mean periods with rms errors within 0.6m and 0.7s respectively. This can be compared with the results from the spectral wave models SWAN (version 40.11) and TOMAWAC (V5P2) run for the same area, in which the rms errors in predicted significant wave height and mean periods were between 0.2 to 0.5m and 1 to 2s, respectively.

Conclusions
With suitable calibration data this algorithm is capable of providing a reasonable representation of the nearshore wave climate where, due to present computational constraints and the number of variables, the use of spectral wave models, such as SWAN or TOMAWAC would not be viable.

References
2.2.2 EP2 - Parametric modelling of waves in estuaries (POL - Wolf)

Parametric Modelling of Waves in Liverpool Bay and Dee Estuary
J.Wolf, POL Report ID162, November 2003

Aim The need for ‘rules’ to guide long-term cellular morphological models for open coasts and estuaries has led to this attempt to derive simple parameters relating wave height to offshore boundary conditions, wind-speed, fetch and water depth. The SWAN model is regarded for this purpose as producing the ‘real’ wave field. Actually, due to model limitations, this will not be correct, but it is interesting to see how close an approximation to a complex model can be achieved by a parametric model.

Approach
The SWAN model has been run for a set of scenarios, with a grid resolution of less than 200m (1/600° by 1/400°), for the Liverpool Bay area including part of the Mersey Estuary and most of the Dee Estuary (the bathymetry for the latter is rather crude in the upper part of the Dee – a new bathymetry survey should be available soon). This model contains an area of open coast as well as an estuary (see Figure 1). Several scenarios of wind-driven waves were run with SWAN (versions 40.11 and 40.31), combinations with separate wind sea and swell have not been examined. Three wind-speeds were chosen: 5m/s, 15m/s and 25m/s, approximately representing the background (every day) wave conditions, the once a year winter storm and the 1 in 100 year storm. Three water levels were used in combination with these wind-speeds viz. mean sea level, mean high water springs (MHWS) and mean low water springs, giving a total of 9 model runs. In fact the mean sea level runs were sufficient to characterise the response. Various parameterisations were derived for the wave height and peak period in terms of water depth, wave boundary conditions and wind speed, attempting to use only local variables.
Offshore wave boundary conditions in approximate equilibrium with the selected wind were chosen. The wind is assumed constant over the whole area, always from NW, with 10-m wind-speeds of 5, 15 and 25 m/s respectively. The wave field in SWAN is therefore driven by a combination of the boundary forcing and the local wind. The 3 wind scenarios are summarized in Table 1.

Table 1 SWAN model scenarios

<table>
<thead>
<tr>
<th></th>
<th>Ws(m/s)</th>
<th>Hs(m)</th>
<th>Tp(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low waves</td>
<td>5</td>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>Medium waves</td>
<td>15</td>
<td>4.9</td>
<td>9.2</td>
</tr>
<tr>
<td>High waves</td>
<td>25</td>
<td>7.4</td>
<td>11.6</td>
</tr>
</tbody>
</table>

The open coast and estuary are immediately seen to behave differently. The two regimes partition very nicely by means of the peak wave period. Figure 2 shows a map of peak period from SWAN for the 15m/s wind case. Outside the estuary the peak period is determined by the boundary input value. There is some transmission of the offshore wave forcing (mainly down the Mostyn and Hilbre channels) but much of the
wave energy inside the estuary is driven by the local wind. As a result the two regimes were parameterized separately.

![Peak wave period (s) - wind speed = 15 m/s](image)

Figure 2 Peak period from SWAN – wind-speed = 15 m/s. The colour scale provides a key for period in seconds and the coordinates are degrees longitude and latitude

Open coast
As waves approach the shore, there is observational evidence for a self-similar wave spectrum to be applicable, which accounts for the redistribution of energy as the waves shorten e.g Tucker and Pitt (2001), p. 337. The peak period remains constant, equal to the value specified at the open boundary. Two options were tested for significant wave height, H_s, based on either the Tucker or Kitaigorodskii (TMA) scaling factor.

TMA self-similarity scaling
The TMA scaling factor, comes from fitting a standard spectral shape to wave measurements in shallow water (see Bouws et al, 1985). A depth-dependent scaling factor, ϕ, is applied to the deep water JONSWAP spectrum. The TMA spectrum can be written:
Here, h is the water depth and g is the acceleration due to gravity.

Tucker’s method

Tucker (1994) showed that the nearshore wave height for storm-generated waves could be scaled with the inverse of the peak wavenumber. This is equivalent to assuming constant steepness, so that H_S is proportional to $1/k$. We can then use the formula:

$$H_s = H_{sb} \frac{k_p}{k_p},$$

(2)

where H_{sb}, k_p are the wave height and wavenumber on the boundary, respectively.

The linear dispersion relation, $\omega = \sqrt{gk \tanh(kh)}$, relates wavenumber ($k=2\pi$/wavelength) and frequency ($\omega=2\pi$/period), but must be solved iteratively. The following approximation can be used to calculate the peak wavenumber, given the wave period, to within 2% (ref?).

$$k_p = \frac{\omega_p^2}{g \tanh^{2/3}(\omega_h^{3/2})} \quad \text{where} \quad \omega_h = \omega_p \sqrt{\frac{h}{g}}.$$

(3)
Figure 3
Comparison of scaling methods – axes show wave heights in metres

Figure 3 shows the fit between parametric and SWAN model wave heights along the section shown in Figure 1. Tucker’s method (dark blue diamonds) gives a slightly better fit than TMA (magenta diamonds), although both start to break down for low wave heights, very near shore, which will be discussed later. As it is also simpler to calculate, Tucker’s scaling was selected for the open coast parameterisation.

Estuary

The formulae for fetch-limited growth in shallow water from the Shore Protection Manual (SPM), USACE (1984), are:

\[H_s = 0.283 \frac{U_a^2}{g} \alpha \tanh(0.00565 \sqrt{f} / \alpha), \quad T_p = 7.54 \frac{U_a}{g} \beta \tanh(0.0379 \sqrt{f} / \beta)\]

where \(\alpha = \tanh(0.53\bar{d}^{0.75})\), \(\beta = \tanh(0.833\bar{d}^{0.375})\). The non-dimensionalised depth and fetch respectively are \(\bar{d} = h g / U_a^2\), \(\bar{f} = f g / U_a^2\) and the effective wind-speed \(U_a = 0.71(1.1U_{10})^{1.23}\). Here, \(f\) is the fetch in metres, and \(U_{10}\) is the wind speed at 10m above the sea surface. These equations were used to parameterise the wave height and period for the Dee and Mersey estuaries. The fit along the part of the model sections within the Dee is shown in Figure 4 and is very good. Two calculations were made, one with a variable fetch calculated from just inshore of the West Hoyle Bank, and the other with a constant 5km fetch. The latter was found to be as good as using the realistic fetch and simplifies the parameterisation as fetch need not be calculated for different wind direction.
Nearshore zone
The open coast model breaks down when the depth drops below about 10m. In this region wave breaking limits wave height, the wave spectra become bimodal with both local wind-sea and boundary forcing (acting like swell) both being important. It is in this region that the complexity of a model like SWAN cannot easily be parameterized. A better fit was achieved by including a crude wave dissipation, related to wave height, Hs/h and water depth. By trial and error the following formula was applied:

$$H_s' = H_s - H_{sds}, \text{ where } H_{sds} = 2.5H_s \frac{H_s}{h} \exp(-0.3h) \quad (5)$$

This nearshore zone still shows the largest discrepancy between the parametric and SWAN model. Figure 5 shows the correction to the wave heights achieved for the high wave case which required the largest correction.
Figure 5 Parametric versus SWAN wave height in metres along a section
The lowest wave heights correspond to the points nearest the coast. The red diamonds are the uncorrected wave heights and the black diamonds are the wave heights after a correction for wave dissipation has been made.

The depth is not necessarily decreasing monotonically towards the coast and the spectra in this region are bimodal. Therefore there is a limit to the applicability of these simple models in this zone.

Results
After application of the above formulae: (2) and $T_p = \text{constant}$ for the open coast, (4) for the estuary and applying the dissipation correction (5) a reasonable agreement is obtained for the parametric and SWAN model. Figure 6 shows the comparison for the 15m/s case.
The r.m.s. errors for the 5m/s, 15m/s and 25m/s wind speeds were 0.05m, 0.41m and 0.55m respectively, or less than 10% of the mean wave height. The main discrepancies in wave height occur in the nearshore zone, within the 10m contour, as illustrated in Figure 7.
Figure 7 Difference between parametric and SWAN model wave height in metres for three scenarios – low, medium and high waves. The coordinates are degrees longitude and latitude.
Conclusions

1. The open coast and estuary behave differently. The Dee estuary is sheltered behind the West Hoyle Bank. (This presumably is true for most estuaries to a greater or lesser degree behind flood and ebb shoals). The open coast exhibits a constant peak period to very near the coast, and is mainly controlled by the boundary forcing except within the 10m contour. The estuary experiences some transmission of boundary forcing plus mainly local wave generation by wind.

2. Self-similarity scaling, with a constant peak period can be used to predict the open coast conditions. It is possible to use the Tucker or Kitaigorodskii (TMA) scaling. Tucker’s formula effectively assumes constant steepness ak, so that H_S is proportional to $1/k$.

3. The parametric formulations for fetch-limited wave growth, e.g. SPM formulae, work well for the estuary.

4. The discrepancies are largest in the nearshore zone and the entrances of the main channels of the estuary. There is likely to be some transmission of waves along the channels. In very shallow water near the coast (less than 10m) the attenuation due to dissipation processes, bottom friction and depth-limited breaking, becomes important and in this zone the full complexity of processes requires a more detailed model such as SWAN.

References

2.2.3 EP3 - Algorithms for vegetated marsh surface friction coefficient (CCRU-Turner)

Aim To create a new friction coefficient for implementation within the SWAN (Simulating Waves Nearshore) model. To enable the model to calculate changes in wave parameters, not only through the inclusion of the bathymetric profile but also through the inclusion of wave energy attenuation due to roughness introduced by i) the morphology of the mudflat-saltmarsh transition and ii) the vegetation canopy structure of saltmarshes lying high in the tidal frame.

Scientific Background
Rather than creating a new wave model, it was decided that the best use of the resources available in EstProc was to create an algorithm that would perform well within the existing Delft-3D SWAN model (version 40.11).

The SWAN model is a third generation spectral model developed by a team at Delft University of Technology (Netherlands), and is designed for use between the area along the coastal seas covered by the WAMDI model (which can only be used validly for resolutions of 20-30 km and in water depths of 20-30 m (Komen *et al.*, 1994)). SWAN is designed for use between water depths of 20-30 m and the highest astronomical tide level. SWAN is a Eulerian model and is based on the action balance equation:

\[
\frac{\partial}{\partial t} N + \frac{\partial}{\partial x} C_x N + \frac{\partial}{\partial y} C_y N + \frac{\partial}{\partial \sigma} C_\sigma N + \frac{\partial}{\partial \theta} C_\theta N = \frac{S}{\sigma}
\]

From the left, the first term represents local rate of change of action density \(N\) in time, the second and third terms represent the propagation in \(x\) and \(y\) (space) with \(C_x\) and \(C_y\) (the propagation velocities in space). The fourth term represents the shifting of relative frequency due to variations in water depth and currents while the fifth term represents depth induced refraction.

The right hand term is the energy source term, which accounts for:

- generation
- dissipation
- non-linear interactions between waves (triads and quadruplets).

The SWAN model has been extensively tested and validated. Thus, for example, project JERICHO which used satellite data and buoy data with SWAN to examine how changes in wave behaviour in deep water translate into shallow water. However, this project, like all other previous projects employing SWAN, concentrated on waves over a large area (e.g. greater than 15 km\(^2\)). There was thus a need to evaluate the performance of SWAN over relatively short distances (10s to 100s meters) and in very shallow water depths (< 1 m).

Benefits from EstProc
The focus of this component of EstProc was to test the performance of SWAN over relatively short distances (ca. 200 m) and shallow water depths (< 1 m) of the upper intertidal profiles at Dengie, Essex, UK.
Firstly, the bottom friction coefficients included within the model were evaluated. These are: JONSWAP coefficient (Hasselmann 1973), the coefficient of Madsen et al. (1988), and the coefficient of Collins (1972). The JONSWAP coefficient is an empirically based constant, the Madsen coefficient is derived from a complicated eddy viscosity model, and the Collins coefficient is a non-linear formulation based on drag (Booij et al. 1999); it is only possible for one of these coefficients to be employed within the model for each SWAN run. It was decided to use the Collins coefficient as this could include not only variations in vegetation density induced roughness over the transect but also an element of vegetation height (Booij pers. comm. 2003).

Justification
The attenuation was calculated based on the Collins’ drag law (Collins 1972). The equation used in the SWAN model for the Collins’ drag law is:

\[C_{\text{bottom}} = C_f \cdot g \cdot U_{\text{rms}} \]

Where \(C_f \) is the friction coefficient (the default of this value in SWAN is 0.015), \(g \) is the gravitational acceleration and \(U_{\text{rms}} \) is the wave-induced orbital velocity at the bottom of the water column (Booij et al., 1999).

The Collins coefficient was originally derived for water depths exceeding the shallow film of water which covers a saltmarsh during inundation, and in its unmodified state the Collins drag law does not explicitly include any representation of bottom friction due to the presence of vegetation. As part of the EstProc study, the aim was to modify the coefficient to more accurately reflect the observed wave attenuation over saltmarshes in the UK, and also in combination with EstProc work in The Netherlands. This was achieved by first comparing observed wave attenuation with predicted attenuation using the SWAN model and changing the value of \(C_f \) to improve the statistical fit between predicted and observed attenuation. Subsequently, it was found that the new, improved, value of \(C_f \) could be approximated by multiplying a series of vegetation characteristics, namely:

- stem diameter, vegetation height, and the density of vegetation observed on the marsh.

The coefficient created by the EstProc team (known as \(C_{f_{\text{veg}}} \)) thus replaces the \(C_f \) term in Collins’ drag law in the model, and is based on specific and detailed data on the vegetation structure:

- the average plant stem diameter \((d) \) (in meters) in the square metre monitored
- the number of plants (not stems) per metre square \((n) \)
- the average height of the plants (in meters) in one square metre \((h_{\text{veg}}) \).

The \(C_{f_{\text{veg}}} \) term is calculated from these parameters simply as:

\[C_{f_{\text{veg}}} = C_w \cdot d \cdot n \cdot h_{\text{veg}} \]
Where C_w is a drag term. In its present form, $C_{f_{veg}}$ is easily incorporated into the SWAN model as it simply replaces C_f, with the strength of the coefficient changed by the $C_{f_{veg}}$ value.

Inputs

- Seaward boundary H_s (m)
- Seaward boundary T_p (secs)
- Bathymetry (m)
- Water depth (m).

For the vegetation coefficient:

- The average plant stem diameter (d) (in meters) in the square metre monitored (m)
- The number of plants (not individual stems) per metre square (n)
- The average height of the plants (in meters) in one square metre (h_{veg}) (m)
- The drag term C_w.

Outputs

Pattern of wave spectra and wave parameters such as H_s and T_p along a cross-shore transect from the seaward boundary landwards.

Validation

The above method was calibrated using data from just one tidal inundation of the Dengie marshes, Essex, England and the marshes of Paulinaschor, Scheldt estuary, The Netherlands. The model was then tested on 14 other tides from Dengie (Figure 1) and other tides in Paulinaschor. This model has recently been tested on 9 further tides from a second phase (July 2001 – April 2002) of data collection on saltmarsh inundation events from the Dengie Peninsula (which has been processed under the EstProc project). As can be seen in Figure 1, the model predictions of wave attenuation were comparable to those in Phase 1 of the dataset.

![Figure 1](image1.png)

Figure 1 Plotted comparisons of observed H_s at Dengie (blue, with data points) and SWAN predicted H_s (pink), one from each phase of data collected at the Tillingham site. PT1 is pressure transducer 1 located near to the seawall and distance is measured in offshore direction.
A)

Figure 2 Comparison of measured and modelled H_s and associated errors (see Figure 1 for note on PT1)

Note: (A) Simulation of significant wave heights along cross-shore transect using default SWAN model setup and model with improved friction term, compared to observed attenuation on a typical tide (tide 8, phase I (10/01/2000, 13.09) and (B) Mean error as difference between modelled and observed H_s reduction (%) relative to seaward transect limit for (i) SWAN in default mode (i.e. $Cf = 0.015$) – shown above left and (ii) SWAN using optimised friction terms approximated from vegetation measurements – shown above right (error terms were computed by comparing model runs with observed wave attenuation over 24 wave records (tides)). Error bars indicate ± one standard deviation around the mean.

While the SWAN model, run in default mode (Figure 2A), predicts wave attenuation from the most seaward limit of the transect to the mudflat/saltmarsh transition zone relatively well, it fails to achieve accurate attenuation values over the mature marsh. The panels of Figure 2 illustrate the significant improvement in terms of overall prediction of wave attenuation over the entire transect when the empirical friction factors, approximated from vegetation measurements, are used. The use of the empirical friction factors reduced errors from ca. 55% (SWAN in default mode) to < 5% (SWAN with modified friction factors) at the landward limit (ca. 120 m inland from the mudflat/saltmarsh transition zone). The results do suggest, however, that the modified friction factors used for the transition zone were unrealistically high, leading to an over-
prediction of attenuation in this particular cross-shore zone. Further work is needed to improve the representation of surface friction in this transitional area (see below).

The average value of $C_{f_{\text{veg}}}$ for Tillingham was 0.63, with individual values based on a few vegetation observations and a gentle gradient in value between observations (Figure 3).

The remaining discrepancy between modelled and observed attenuation (see Figure 2 above), in particular in the mudflat/saltmarsh transition zone, clearly indicates that the C_w term is a drag coefficient that will need to be defined more accurately following future research. It is likely to vary with vegetation type. For example the woody stems of Atriplex spp. will have higher C_w values than those attributed to ‘softer’, more flexible vegetation e.g. Salicornia spp. Values for saltmarsh species may in turn be greater than those associated with seagrasses. Previous models have used a fixed C_w value of 1.0, but as noted above this would not be able to reproduce the spatial variation in dissipation.

Further improvement of the coefficient can be made by incorporating stem numbers or by parameterising the coefficient according to species.

There is a lack of data for the investigation and development of the C_w drag term in the coefficient. This would be most efficiently collected in a laboratory flume environment where any changes in H_s reduction could only be attributed to the species planted in the flume. As yet it has not been possible for the model to account for the changing surface roughness which results from a ‘floating canopy’ effect. This occurs when the vegetation canopy lifts off the marsh surface on progressive inundation.

Limits of Applicability

The characterisation of vegetation by stem diameter, density, and height does not fully incorporate vegetation structure and rigidity. For a more physically meaningful

Figure 3 Spatial variation in value of coefficient $C_{f_{\text{veg}}}$ for Tillingham

A high and invariant value of $C_{f_{\text{veg}}}$ for Tillingham was used early in the model development but it became clear this gave a poor result as it could not mimic the patterns of dissipation shown on the marsh.

Gaps in the knowledge

The characterisation of vegetation by stem diameter, density, and height does not fully incorporate vegetation structure and rigidity. For a more physically meaningful
representation of vegetation in the model, these latter two vegetation characteristics must also be incorporated.

In theory the model should ‘scale up’ for use in environments with lower water depths (microtidal marshes), or ‘scale down’ for application in studies of seagrasses or kelp fields where vegetation acts less like a direct buffer and more to increases the viscosity of the water (Mork, 1996). The model remains untested for either of these vegetation types.

References

NB:
More explicit information on running the model can be found in the following report on the EstProc website:

2.2.4 EP4 - Algorithm- a model for wave dissipation due to flexible vegetation (DHH-Booij)

Aim
To derive an expression for wave dissipation in a region with vegetation.

Background and basic assumptions
This part of project has worked on the derivation of an expression for wave dissipation in a region with vegetation. The vegetation is assumed to be flexible, and the vegetation height is assumed to be of the order of magnitude of the depth. Some simplifications are necessary in order to keep an analytic treatment feasible. Such simplifications are allowed in view of the erratic nature of vegetation in reality; a very accurate model would be impossible.

There are four basic assumptions:
1. All physical effects, including friction are assumed to be linear.
2. All time-dependent quantities are assumed to vary harmonically.
3. The dynamics is not integrated over the height of the vegetation, but is considered at one level which is related to the vegetation height.
4. The pressure fluctuations due to waves penetrate into the vegetation layer as if there were no vegetation.

Justifications for the assumptions
Assumption 1 is justified because the friction is fairly small. The nonlinearity can be introduced at the end in an approximate manner. Assumption 2 is valid if the previous one is; irregular wave motion is introduced at the end by taking a sum over many harmonic components. We introduce the following notation:

Let \(p(t) = P \exp(i \omega t - i k x) \) be a harmonic function of time, then \(|P| \) is the amplitude of the function.

Assumption 3 is hard to justify; it is expected that by a proper choice of the level representative of the whole layer a good result can be obtained. This representative level will be called \(z_v \), it is a constant factor \(c_v \) times the vegetation height \(h_v \) or, if this is larger than depth, \(c_v \) times depth \(d \); i.e. \(z_v = c_v \min(d, h_v) \).

Assumption 4 seems realistic because in general vertical velocities in the water body are small, certainly close to the bottom; this is expected to be true also for velocity differences between fluid and vegetation. Therefore the expression for pressure over the vertical can be taken from the generally accepted linear wave theory. Thus at level \(z_v \) the value of pressure \(P = P_{\text{surf}} \cosh(k z_v) / \cosh(k d) \), where \(P_{\text{surf}} \) is the pressure fluctuation at the (average position of the) surface, i.e. \(P_{\text{surf}} = \rho g \eta \).

Equations of the model
The horizontal velocity of the fluid is calculated from the equation of motion:

\[
i \omega \rho U + w(U - U_v) + \frac{dP}{dx} = i \omega \rho U + w(U - U_v) - i k P = 0
\]

Here the friction coefficient \(w \) is assumed to be a given constant for the time being. The gradient of \(P \) is interpreted as the force per unit volume; thus \(w \) is the ratio of the force per unit volume and the velocity difference between fluid and stalks.
The velocity of the vegetation depends on the rigidity of the stalks; the force exerted by the fluid on the stalks is assumed to be in balance with the restoring force:

\[w(U-U_v) + K X_v = i \omega w(X - X_v) + K X_v = 0, \]

so that \(X_v = X / (1 + i K/(\omega w)) \). Thus \(U = \Delta U (1 - i \omega w/K) \) where \(\Delta U = U - U_v \).

The dissipation (per unit surface) is then obtained by taking the product of the friction force and the velocity \(D = w/2 |\Delta U|^2 \text{Min}(d,h_v) \).

The energy density (energy per unit surface) is \(E = 1/2 \rho g \eta^2 \).

Coefficients \(w \) and \(K \)

The friction coefficient \(w \) is assumed to be constant; in reality it is not since we are always dealing with a turbulent regime. The following expression for \(w \) will be used: \(w = C_D \rho \delta n |u-u_v| \); the average value for harmonic motion then is \(w = 8/3\pi C_D \rho \delta n |\Delta U| \). The problem with this relation is that \(U-U_v \) is not known beforehand.

The coefficient \(K \) depends on mechanical properties of the vegetation. From structural mechanics an expression is known for circular tubes or massive cylinders made of an elastic material. Whether such a model is applicable for natural vegetation is doubtful. Probably it is more relevant to measure (if possible at all) the relation between a force on an individual stalk at level \(z_v \) and the displacement at the same level; let the ratio be called \(K_s \). From this \(K \) can be calculated as follows: \(K = n K_s / h_v \).

The restoring force often is not primarily caused by the mechanical strength of the plants but by their buoyancy. Let \(\Delta \rho \) be the difference in mass density between plants and fluid. Further assume that the relative volume of the plants \(V_v \) (volume of the plants divided by total volume) is concentrated at the level \(z_v \). Then the restoring force per unit volume divided by the displacement is: \(K = \Delta \rho g V_v / z_v \). This is expected to be a very small quantity in practice, so that other effects may become dominating, such as increase of roughness due to the vegetation.

Transition to irregular waves

In the SWAN model one needs an expression relating \(D(\sigma,0) \) to \(E(\sigma,0) \); a very simple (and probably adequate) solution is to assume that the ratio \(D/E \), the quantities derived in the previous section, is also valid for all spectral components. In SWAN the same has been done for the breaking dissipation term in the action balance equation.

In the above equations one would then use an average \(\omega \) and corresponding average \(k \). The value of \(U-U_v \) is then a value valid for the whole spectrum, which is the value needed for the computation of the (nonlinear) friction coefficient \(w \).

A disadvantage of this approach is that in case of a vegetation height much smaller than depth the high frequencies may be attenuated too much.

The value of \(U \) in the vegetation layer is also to be used as the output quantity "orbital velocity at the bottom"; the value calculated presently in SWAN is invalid in presence of vegetation.

Computation of \(w \) and \(D \)

From the equation of motion we obtain: \(\rho \omega \Delta U (1-i\omega w/K) - i \omega \Delta U - k P = 0 \), or \(\Delta U \) \[\rho \omega - i w (1 + \rho \omega^2/K) \] = \(k P \). From this equation \(\Delta U \) can be computed; further analysis is necessary because \(w \) depends on this quantity.
Since \(w = \frac{8}{3}\pi C_d \rho \delta n |\Delta U| \) the equation for \(\Delta U \) can be rewritten as: \(\Delta U \left[\rho \omega - i \frac{8}{3}\pi C_d \rho \delta n |\Delta U| (1 + \rho \sigma^2/K) \right] = k \rho \). Taking the absolute value of the above equation we get: \(|\Delta U| \left[\rho \omega - i \frac{8}{3}\pi C_d \rho \delta n |\Delta U| (1 + \rho \sigma^2/K) \right] = |k \rho| \), enabling us to calculate \(|\Delta U| \) and thereby the dissipation \(D \).

For very flexible vegetation \(K \) is small, and then one gets: \(\Delta U \left[-i \frac{\rho \omega^2}{K} \right] = k \rho \). Then \(U = k \rho / (\rho \omega) \). This is understandable, since with very flexible vegetation the velocity of the fluid is as if there were no vegetation, leading to a small dissipation: \(D = \frac{w}{2} |\Delta U|^2 \min(d,h_v) = \frac{1}{2} U^2 K^2 w^{-1} \omega^{-2} \min(d,h_v) \).

For the case of a vegetation which is very low compared with depth \((h_v \ll d) \) this can be translated into Collins friction formula with \(C_f = \frac{1}{2} K^2 w^{-1} \omega^{-2} \min(d,h_v) \).

Another special case occurs when there is a rigid dense vegetation, i.e. \(w \) is dominant. \(8/3\pi C_d \rho \delta n |\Delta U|^2 = k \rho \).

Evaluation and implementation
This method has been implemented, see EP3.

Notation
- \(c_v \): constant relating representative height in the vegetation layer and the vegetation height
- \(C_d \): drag coefficient for stalks or leaves
- \(d \): water depth
- \(g \): acceleration due to gravity
- \(k \): wave number \((=2\pi/\text{wavelength})\)
- \(h_v \): vegetation height
- \(K \): spring coefficient \((\text{ratio of force per unit volume and excursion from equilibrium position})\) of the vegetation
- \(n \): number of stalks per \(m^2 \)
- \(P \): pressure
- \(t \): time
- \(T \): wave period
- \(u \): horizontal velocity of the fluid; \(u = dx/dt \)
- \(u_v \): velocity of the vegetation; \(u_v = dx_v/dt \)
- \(w \): friction coefficient relating the force \((\text{per unit volume})\) on the stalks to the difference in velocity of the fluid and the stalks.
- \(x \): horizontal coordinate \((\text{in the direction of wave propagation})\)
- \(X \): horizontal displacement of a water particle from its average position
- \(X_v \): horizontal displacement of the vegetation from the equilibrium position
- \(z \): vertical coordinate \((z=0 \text{ at the bottom})\)
- \(z_v \): representative level in the vegetation layer \((=c_v \star \min(h_v,d))\)
- \(\delta \): diameter of the stalks of the vegetation
- \(\theta \): propagation direction of a wave component
- \(\eta \): vertical position of the surface
- \(\rho \): mass density of the fluid
- \(\sigma \): relative angular frequency of the wave motion
- \(\omega \): \((\text{absolute})\) angular frequency of the wave motion \(\omega = 2\pi/T \)
2.2.5 EP5 - Algorithm for vegetation friction factor (WLD-de Vries)

Aim
To improve the accuracy of the SWAN wave model for situations where submerged or emergent vegetation is occurring, based on species specific vegetation characteristics.

Scientific background
The wave model SWAN uses the Collins (Collins, 1972) friction coefficient for calculating wave transmission over unvegetated bottoms. This friction coefficient is not a priori suited to include the effect of vegetation on wave transmission. In our study it is shown that this friction coefficient is, except for a constant factor, the same as an alternative vegetation friction coefficient that can be calculated on the basis of vegetation characteristics, stem diameter, plant height, plant density and a species specific drag factor.

This approach has been tested by a comparison between the dissipations predicted by the alternative friction coefficient and the dissipations measured in a field experiment. This resulted in quite satisfying correlations; correlation coefficients of about 0.6 – 0.8 were calculated.

Improvement in understanding
Utilisation of the vegetation friction coefficient allows the user to analyse wave dissipation over vegetated areas. Based on field experiments, this coefficient has been calibrated for *Spartina* dominated emergent vegetation. From this, it has now become possible to predict wave dissipation with the SWAN model for saltmarshes using vegetation and plant characteristics.

Implementation
When entering shallow water, the wave spectrum is strongly affected by the bottom through shoaling, refraction, diffraction, reflection and bottom friction. In finite-depth water, nonlinear effects such as depth-induced wave breaking or wave-wave interactions arise. The nature of the bottom and the topography have a strong impact on the near shore wave field. A rough or irregular bottom will induce larger wave dissipation than a smooth, flat bottom. The process of wave energy dissipation at the seabed can be modeled by the action of a stress on the water moving at a given velocity just above the boundary layer (Putnam and Johnson, 1949).

As a basis for theoretical formulation for dissipation due to vegetation, the theoretical relation of bottom dissipation will be described, following the formulations of Van Rijn (1989). The dissipation is equal to the time-averaged work done by the friction force at the bottom, giving:

\[
D_f = \frac{1}{T} \int_0^T \tau_b \cdot U_\delta \, dt
\]

(1)

Where

- \(D_f \) - Dissipation by bottom friction
- \(\tau_b \) - Bed shear stress
- \(U_\delta \) - Current velocity just above boundary layer
In the case of wave action, substitution of

\[U_0 = \hat{U}_0 \cdot \sin(\omega t) \] (2)

and

\[\tau_b = \frac{1}{2} \rho \cdot f_w \cdot \hat{U}_0^2 \cdot \sin^2(\omega t) \] (3)

where:
- \(f_w\) - friction coefficient
- \(\hat{U}_0\) - maximum velocity near boundary layer
- \(\rho\) - mass density of the fluid
- \(\omega\) - (absolute) angular frequency of the wave motion \(\omega = \frac{2\pi}{T}\)

yields:

\[D_f = \frac{\rho f_w \hat{U}_0^3}{2T} \int_0^T \sin^3(\omega t) dt = \frac{4}{3\pi} \rho \cdot f_w \cdot \hat{U}_0^3 \] (4)

This formulation shows that dissipation due to bottom friction is related to a friction coefficient \(f_w\) and the third power of the amplitude of the horizontal orbital velocity at the bottom, \(\hat{U}_0\) (from now on referred to as \(U_{orb}\)). This equation is the basis of the following approach to describe wave energy dissipation as a function of some vegetation characteristics:

First we define the force on a single stem of height \(dz\), assuming a uniform \(\hat{U}_{orb}^2\) as:

\[F_{vs} = \frac{1}{2} \rho \cdot f_w^* \cdot D \cdot dz \cdot \hat{U}_{orb}^2 \cdot \sin^2(\omega t) \] (5)

where:
- \(F_{vs}\) - force exerted on a single stem of vegetation
- \(f_w^*\) - vegetation friction coefficient
- \(D\) - stem diameter
- \(dz\) - average vegetation height
- \(\hat{U}_{orb}^2\) - maximum horizontal orbital velocity

The stress \(\tau_v\) on the vegetation with height \(dz\), per unit area, depends on the density of stems \(n\).

\[\tau_v = \frac{1}{2} \rho \cdot f_w^* \cdot D \cdot dz \cdot n \cdot \hat{U}_{orb}^2 \cdot \sin^2(\omega t) \] (6)

where:
τ_v - stress caused by vegetation friction
n – number of stems per unit area

The energy dissipation per unit area, integrated over the vegetation height dz, assuming constant density, becomes:

\[D_v = \frac{4}{3\pi} \rho \cdot U_{orb}^3 \cdot f_w^* \cdot D \cdot n \cdot dz \] \hspace{1cm} (7)

where:
\[D_v \] - dissipation of energy per unit area of vegetation

In this approach four vegetation characteristics are included, \(f_w^* , D , n , \) and \(dz \). Vegetation density, stem diameter and vegetation height. The friction factor \(f_w^* \) is still dependent on other species specific characteristics such as the stiffness and the roughness of the plant surface that are not further elaborated upon in this work.

In a simplified case, with shallow water wave conditions and constant plant density in height, the total vegetation friction factor \(c_v \) equals:

\[c_v = f_w^* \cdot D \cdot n \cdot dz \] \hspace{1cm} (8)

where:
\[c_v \] - vegetation friction factor

Our aim is now to prove the validity of replacing the bottom friction factor \(c_f \) that is used in SWAN with the vegetation friction factor \(c_v \). For that purpose, SWAN wave dissipation due to bottom friction (equation 11) will be rewritten to a form comparable to the way wave dissipation is described according to Van Rijn (equation 4).

\[S (\omega , \theta) = - C_{bottom} \cdot \frac{\omega^2}{g \cdot \sinh^2 (k \cdot h)} \cdot E (\omega , \theta) \] \hspace{1cm} (9)

where:
\(S \) - wave dissipation
\(\theta \) - propagation direction of a wave component
\(C_{bottom} \) - bottom friction coefficient
\(g \) - acceleration due to gravity
\(k \) - wave number (=2\(\pi \)/wavelength)
\(h \) - water depth
\(E \) - total wave energy density

The expression of Collins (1972) is based on a conventional formulation for periodic waves with the appropriate parameters adapted to suit a random wave field. The dissipation rate is calculated with the conventional bottom friction formulation of equation 11 in which the bottom friction coefficient is
\[C_{\text{bottom}} = c_f \cdot g \cdot U_{\text{orb}} \]

(10)

where \(c_f \) is the Collins friction factor

From equation 9 and 10 it follows that:

\[S_{ds,b}(\omega, \theta) = -c_f U_{\text{orb}} \frac{\omega^2}{g \sinh^2(\frac{k}{h})} E \]

(11)

The sum of the potential and the kinetic energy density is calculated by:

\[E = \frac{1}{8} \rho g H^2 \]

(12)

where:

\(H \) - root-mean-square wave height

With \(\omega (= 2\pi/T) \) and \(E \) according to 12, formula 11 can be rewritten as:

\[S(\omega, \theta) = -c_f U_{\text{orb}} \cdot \rho \cdot H^2 \frac{\omega^2}{8 \sinh^2(\frac{k}{h})} \]

(13)

Furthermore, from linear wave theory it is known that:

\[U_{\text{orb}}(z) = \omega \cdot H \frac{\cosh(k(h + z))}{2 \sinh(kh)} \]

(14)

where:

\(z \) - height above bottom

Approaching the bottom, thus \(z = -h \), the horizontal velocity amplitude becomes:

\[U_{\text{orb}}(z) = \frac{\omega \cdot H}{2 \sinh(kh)} \]

(15)

With this formulation, equation 13 can be written as follows:

\[S_{ds,b}(\sigma, \theta) = -c_f U_{\text{orb}} \cdot \rho \cdot \frac{1}{2} U_{\text{orb}}^2 = -\frac{1}{2} c_f \cdot \rho \cdot U_{\text{orb}}^3 \]

(16)

This last equation shows a great similarity with the way dissipation was described by Van Rijn (see equation 4). The slight differences are:

- the minus sign in the SWAN expression. This is just a result of how dissipation is defined. In SWAN a negative dissipation causes a decrease in wave energy density, while in the approach of the previous chapters positive dissipation has been interpreted as the cause of energy loss

- the second difference is the factor \(\frac{1}{2} \). In the van Rijn formulation this factor is slightly different, namely \(4/(3\pi) \approx 0.42 \).
The great similarity in the two formulations of wave energy dissipation gives a good opportunity to make SWAN suitable for vegetation influence by replacing the Collins friction factor f_c by the alternative vegetation friction factor v. Table 1 shows some results after calibrating the SWAN model to field data. It is clear that this factor is much higher then the value usually used for f_c, 0.015. f_w^* proves to be fairly constant, due to the fact that *Spartina anglica* is dominating the local vegetation.

Table 1 Vegetation friction factors calculated for 6 different field locations(P0-P5) based on shallow water wave theory, with constant vertical density of vegetation

<table>
<thead>
<tr>
<th>Location</th>
<th>dz</th>
<th>D</th>
<th>n</th>
<th>f_w^*</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>42</td>
<td>4.3</td>
<td>872</td>
<td>0.90</td>
<td>1.41</td>
</tr>
<tr>
<td>P1</td>
<td>30</td>
<td>3.5</td>
<td>796</td>
<td>0.90</td>
<td>0.75</td>
</tr>
<tr>
<td>P2</td>
<td>38</td>
<td>3.9</td>
<td>620</td>
<td>0.90</td>
<td>0.83</td>
</tr>
<tr>
<td>P3</td>
<td>34</td>
<td>2.9</td>
<td>1476</td>
<td>0.89</td>
<td>1.29</td>
</tr>
<tr>
<td>P4</td>
<td>36</td>
<td>3.9</td>
<td>1308</td>
<td>0.89</td>
<td>1.64</td>
</tr>
<tr>
<td>P5</td>
<td>31</td>
<td>3.8</td>
<td>1704</td>
<td>0.88</td>
<td>1.76</td>
</tr>
</tbody>
</table>

Limits of applicability

The algorithm has been tested for *Spartina anglica* dominated vegetations.

Validation

The effectiveness of the algorithm was investigated by application of the SWAN model to a transect in the Paulina Schor area in the Western Scheldt (NL). For this transect data on plant height, density, stem diameter were collected. In the same transect wave data were measured.

At first the Collins friction coefficient was used for calibration of the 1DH model. Values for this factor turned out to be 2 orders of magnitude bigger than the default value, for unvegetated bottoms. Using the calculated alternative friction coefficients, the SWAN model has been validated. The model results showed a good agreement with reality, but that agreement has not been quantified. Only the wave attenuation at the edge of the salt marsh did not correspond very well with the observed attenuation. A possible explanation could be that vegetation is modelled in SWAN through an enlarged bottom friction, instead of 3D obstacles. Also due to the fact that the development of the orbital velocity in the vegetation is not known exactly, deviations between model outcome and observed attenuation may occur.

References

2.2.6 EP6 - Algorithm for relationship between intertidal surface properties and H/h ratio limit (CCRU- Möller)

Aim To provide data based relationships between wave height and water depth on mudflat and saltmarsh. To establish the maximum limit to observed \(H_{rms}/h \) ratios over a range of intertidal surfaces with differing frictional characteristics.

Scientific Background
Recent research has shown that surfaces are capable of dissipating more than 90% of the incident total spectral wave energy over short (several 10s of meters) distances (Moeller et al. 1996, Möller et al. 1999, 2002). Patterns of wave attenuation over cliffed marsh edges correspond to patterns observed in previous physical scale model experiments, although dissipation landwards of the cliff face is less pronounced in the field. Over ‘ramped’ mudflat-to-saltmarsh transitions dissipation is initially less pronounced but once waves reach the permanently vegetated surfaces further landwards, dissipation exceeds levels predicted by earlier physical scale model experiments.

Spectral summary parameters (e.g. significant wave height, total spectral energy) provide useful indicators of the energy dissipation potential at the marsh-wide scale. The ratio between root-mean-square wave height \((H_{rms}) \) and water depth \((h) \) is controlled by the counteracting processes of shoaling (increasing \(H_{rms}/h \) ratios) and energy losses through bed friction or viscous damping (decreasing \(H_{rms}/h \) ratios).

Benefits from EstProc
Figure 1 was derived from an analysis of data from the Dengie Peninsula, Essex, available to EstProc. Instrument location PT1 was near the seawall and instrument PT14 was situated a distance offshore of about 290 m from PT1; the zonation of the saltmarsh is given in the figure and PT9 and PT10 lie in the area of seasonal saltmarsh vegetation. It strongly suggests that the \(H_{rms}/h \) ratio is constrained by an upper limit determined by bed characteristics along the mudflat to saltmarsh transition. The limiting values of the ratio are plotted in Figure 1.

Thus, for example, on the mudflat at Tillingham, Essex, shoaling dominates over frictional energy losses (viscous damping being of minor importance on a mudflat composed of well-consolidated sediment), leading to an increase in the maximum achievable \(H_{rms}/h \) ratio. This tendency also characterises the transition zone of seasonal vegetation cover, where changes in water depth are minimal (<10cm) and a well-developed mud-mound topography is present. Over the first 20m of permanently vegetated marsh surface, however, the additional frictional losses appear significant enough to reduce \(H_{rms}/h \) ratios to < 0.15 derived from Le Hir et al.’s (2000) study of the Brouage mudflat, France.

Limits of applicability
The relationships above are empirically derived from a finite data series. Their validity is thus limited geographically to the particular site at Dengie, Essex, although there is some evidence (e.g. Le Hir et al. (2000)) that the relationships contained in this algorithm are of more general application.
Intra-annual variability in energy dissipation patterns suggests that variations in vegetation canopy structure and biomass may influence dissipation rates. Progress has been made in EstProc in modelling this dissipation process over vegetated saltmarsh surfaces in the upper intertidal zone using new algorithms in the SWAN model. Using a modified Collins coefficient, which mimics the change in vegetation characteristics across marsh surfaces as community composition changes. It has been possible to develop a dedicated coefficient for vegetation within SWAN (see EP3, Section 2.2.3).

Gaps in knowledge
As mentioned above, there is a need to test the validity of the above relationships at other locations and for other marsh types before they can be fully and more generally accepted as input into numerical models. It is also necessary to develop improved empirical methods for the quantification of surface properties (vegetation and topographic characteristics) and their relationship to hydrodynamic surface roughness. Some progress towards this aim has been achieved within EstProc (see EP3, Section 2.2.3).

References

Figure 1 Relationship between root-mean-square wave height (H_{rms}) and water depth (h) for selected locations along the intertidal transect at Tillingham, Essex. PT 1 is located near the seawall and PT 14 is 290 m offshore

Relationship (algorithm level 1) between root-mean-square wave height (H_{rms}) and water depth (h) for selected locations (solid triangles) along the intertidal transect at Tillingham, Essex (after Möller and Spencer 2003). Also plotted on this figure are (a) lines (fine dotted) that represent the ratio H_{rms}/h of 0.15 found by Le Hir et al. (2000) to apply to maximum wave heights on the Brouage mudflat in France, and (b) lines (bold dotted) that may represent a similar limiting H_{rms}/h of different magnitude for the respective locations on the Tillingham, Essex transect.
2.3 Prediction of the impact of extreme events and major anthropogenic influences

2.3.1 EP7 - Algorithm for modelling flow in dendritic systems – porosity method (HRW-Spearman)

Aim To develop an effective method based on cross-section “porosity” for modelling flow in the dendritic channels found in the saltmarsh and mudflat areas of an estuary.

Scientific background
Dendritic systems (which for the sake of this study effectively means saltmarsh and mudflats, although the general principles apply to all such systems) have irregular bathymetry which can vary significantly over length-scales of 1m or less. These small length scales are considerably less than the practically viable scales of 2D flow model grids for applied modelling. For (non-research) estuary modelling scales are typically of the order of 50-100m in estuaries (and greater for large systems).

The inability of applied models to reproduce the small-scale variation in bed levels can result in a poor overall description of flow through grid cells representing flow through highly varied bed topography, since the bed is represented by a single level throughout the cell. A single level cannot both adequately represent the total storage and the deepest channel through the cell. Usually the bed level is “averaged” meaning that the model represents flow through the grid cell later in the tide than the real situation. This can result in a poor representation of flow through the (saltmarsh or mudflat) system as a whole, especially as it dries and wets. Moreover in an estuary system or tidal inlet dominated by significant and small-scale bathymetric variation these problems can result in a generally poor simulation of flows in the system.

The normal course of action open to the numerical modeller is to enhance the grid resolution over the dendritic portion of the mudflat/saltmarsh up to the point where the flow within the system becomes acceptably similar to the observations. However higher grid resolutions lead to larger numbers of nodes and smaller mesh elements, which can lead to unacceptably long run times.

The new algorithm, developed in EstProc, and described below, includes the effect of the small-scale bathymetric variation on flows without increasing the mesh resolution. This type of approach is termed “sub-grid” modelling.

Improvement in understanding
The new method improves on existing methods because:

- it can significantly improve the accuracy of the flow model results, especially within the saltmarsh
- the increase in run times is only of the order of 15%-25%.

Implementation
The algorithm makes use of the TELEMAC-2D flow model software which allows the specification of the porosity of flow within a model element. Here the algorithm is written in a step-by-step “recipe” style, which can easily be coded for any computer application (assuming porosity is included in the form of the continuity and momentum.
equations which the model is solving). The method samples the local bed elevation data within a specified search radius to determine the associated value of porosity.

The TELEMAC-2D software implements a FORTRAN file (called “princi.f”) which governs the way initial and boundary conditions are implemented within the model. This princi.f file also implements the routine that specifies porosity if required. The algorithm is implemented within two of the subroutines which form the princi.f file:

- CORFON (where the initial bathymetry is specified) and POROS (where the porosity is set).

Algorithm

Inputs
High resolution bathymetry data set (m datum)

Outputs
- Minimum bed level for each model node (m datum)
- Porosity for each model element (no units)

1. Using the appropriate mesh generator, generate the mesh and bathymetry for the available data set.
2. Calculate the required search radius. This should be done by trial and error but as a starting point the following search radius is suggested (for meshes with triangular elements):
 \[
 \text{SR} = \frac{1}{2\sqrt{3}} < \text{grid resolution}
 \]
3. Locate all the bathymetric points within the specified search radius for each model node.
4. Redefine the bathymetry so that, as long as one data point or more is found within the search radius, the bathymetry at each model node is altered to the lowest elevation from those points within the search radius.
5. Define two arrays:
 - ncount(i), the number of bathymetric points corresponding to node i
 - zcount(i,k), the level of the kth bathymetric point at node i
6. Sort the values of zcount(i,k) so that the lowest elevation is zcount(i,1) and the highest elevation is zcount(i,N).
7. On each time step …

For each node …

Calculate

\[
A(i) = \sum_{k=1,j} k \cdot \min(z\text{count}_{k,j}, f_{si}) \quad \quad P(i) = \max\left(\frac{A(i)}{H(i)} - 0.5\right)
\]

where j is given by \(z\text{count}_{i,j-1} < f_{si} < z\text{count}_{i,j}\);
- zcount_{k,j} is the kth elevation for the ith node;
- f_{si} is the free surface elevation at node i;
- P is the porosity associated with node i.
Calculate the porosity of each element

\[PE_m = \frac{1}{3} P_{m,1} + \frac{1}{3} P_{m,2} + \frac{1}{3} P_{m,3} \]

where \(PE_m \) is the porosity associated with the \(m^{th} \) element;
\(P_{m,1} \) etc are the porosities associated with the three nodes corresponding to the \(m^{th} \) element.

Limits of applicability
The algorithm is applicable where there is high resolution bathymetric data (i.e. where the resolution of bathymetric measurements is significantly greater than the model grid resolution).

Validation
The studies described above suggest that the sub-grid methodology will improve the representation of flows both within saltmarsh systems and in estuaries containing such systems. For a given resolution, however, the results of this study suggest that the method can only partially overcome the inaccuracy introduced by coarser resolution. It should be noted that these results are derived from only one specific estuary and further use of the method in different environments is recommended.

The method was consistently successful at improving flows within the saltmarsh but no objective improvement in flows in the main channel outside of the saltmarsh was discernible. Moreover, outside of the saltmarsh the improvements in accuracy due to the method varied from significant improvement to significant deterioration in accuracy and no clear pattern could be observed with variation in location.

The usefulness of the method must be judged against the improvements that can be brought to a model be merely increasing grid resolution. For coarser resolutions (the definition of which may vary from model to model) the suggestion is that (in terms of improved accuracy for a given run time) the method may be less effective than increasing intertidal resolution. At higher resolutions the run times increase rapidly while the corresponding increase in accuracy from the ever-increasing resolution reduces. It is for these situations that the method seems best suited.

The effectiveness of the algorithm was investigated using a TELEMAC-2D model of Salcott Creek in the Blackwater Estuary (Spearman et al, 2004). Model results derived using the algorithm were compared objectively using the Brier Skill Score method – see Sutherland and Soulsby (2003) - against model results derived without the method, and with a reference data set generated using a very high resolution model. The new method was shown to be effective but the level of quantifiable benefits depend on the baseline result used in the Brier Skill Score calculation, and varies spatially within the estuary.

References

2.3.2 EP8 - Algorithm for modelling flow in dendritic systems – Raster model (ABP-Swift)

Aim To develop an effective method based on cross-section “porosity” for modelling tidal flows in the dendritic channels found in the saltmarsh and mudflat areas of an estuary.

Raster Model

(a) Flow between adjacent cells in the X-direction (coupled solution)

Equation (1) is based on the work of Horritt and Bates (2001) but includes the corrected free surface gradient terms referred to in the supporting technical report, ABPmer (2004). The equation is presented in finite difference nomenclature for a two-dimensional grid where \(H_{i,j}^{t} \) represent the water free surface elevation in cell \((i,j)\) of a rectangular grid, whose dimensions are \(\Delta x \) and \(\Delta y \) in the x and y directions respectively. The discharge \(Q \) across a cell boundary in the x direction is given by:

\[
Q_{x}^{i,j} = C\Delta y \cdot h^{3/2} \frac{H_{i-1,j}^{t} - H_{i,j}^{t}}{\Delta x} \]

The Chézy roughness coefficient, \(C \), has been used in preference to the Manning solution. The variable \(h \) represents the depth of flow across the interface between the two adjacent cells. The left hand cell is at index position \((i-1,j)\) and the cell to the right of the cell interface is at index \((i,j)\). Flow is positive from left to right, with advancing \(x \). A similar equation can be developed for flow in the Y-direction.

(b) Flow between adjacent cells in the X-direction (uncoupled solution):

If the flows in the x and y directions are treated as uncoupled, then a one dimensional solution can be recovered from equation (1) by setting \(H_{i-1,j}^{t} \) equal to \(H_{i,j+1}^{t} \) thus:

\[
Q_{x}^{i,j} = C\Delta y \cdot h^{3/2} \frac{H_{i-1,j}^{t} - H_{i,j}^{t}}{\Delta x} \]

Again a similar result applies in the Y-direction.

(c) Flow between adjacent cells in the x direction (uncoupled solution with conservation of specific energy):

Inspection of equation (1) reveals that flow rates tend to increase indefinitely as the roughness of the bed progressively decreases. The reason for this is that the variation in specific energy between adjacent cells has been neglected. The effects of conservation of specific energy between cells are incorporated in the raster solution through the modified expressions provided in equation (3). The coefficient \(Z_e \) is a correction to the original solution which permits the conservation of specific energy in one dimension and regulates the magnitude of predicted current velocities:
and similarly for the Y-direction.

Validation

Test results were presented for the application of the cellular model to two non-uniform bathymetry scenarios. The first test result from a planar sloping beach showed a satisfactory level of agreement with the results of an earlier one-dimensional model. The second test result was an application to Tom Tiddlers creek near Calshot Creek in Southampton Water. There was an encouraging comparison with field records of water levels and current speeds. One problem encountered was the progressively smaller time step required for increasing tidal range, in order to maintain run stability. A post-processing smoothing application was applied to provide a solution to this problem.

Implementation

More details of how the method is implemented are found in the report ABPmer (2004).

References

2.3.3 EP9 - Algorithm for the impact of Global Climate Change and Extreme Events in Estuaries (POL-Prandle)

Aim To utilise analytical relationships for estuary form and process to investigate the impact of Global Climate Change and Extreme Events in estuaries.

Summary
Consequences of Global Climate Change may include changes in:

- mean sea level, magnitude and frequency of storm events (surges, waves, river flow) and supply of sediments.

In this algorithm we have explored likely sensitivities of estuaries of differing size and shape to these changes with particular emphasis on associated flood risks in extreme events.

Based on existing experience, we do not expect dramatic changes in UK estuarine responses to tides or surges from the projected impacts of Global Climate Change over the next few decades. Some enhanced sensitivity might be found in relation to shorter ‘period’ (6 hr) surges associated with secondary depressions on the West Coast, particularly in larger estuaries. Likewise, maintaining fixed defences alongside continuous increases in mean sea level may enhance surge response in the shallowest estuaries.

Increases in mean river flows will produce corresponding proportionate reductions in flushing times. In the absence of ‘hard geology’, enhanced river flows may result in increases in estuarine lengths and depths, though with the proportional increases less than half that of the change in river flow and developing over decades.

The influences of changes in wave climate are more complex and spatially variable within any particular estuary. The potential influence on the nature of sea-bed sediments and associated flora and fauna could, in some cases, be both abrupt and dramatic.

1. Range of Estuary Shapes
We adopt three characteristic shapes (Figure 1) namely: BAY, LINEAR and FUNNEL described by axial, x, variations in breadth and depth increasing in proportion to $x^{1/2}$, x and $x^{3/2}$ respectively. These shapes correspond to values of the bathymetric parameter, ν, (Prandle & Rahman 1980, subsequently PR) of 1, 2 and 5, i.e. almost the complete range of estuaries encountered.

2. Tide and surge heights
Figure 3(b) of PR showed that over this range ($1 < \nu < 5$), amplification of tides (and surges) between the first ‘node’ and the head of the estuary can be up to a factor of 2.5. Concern focuses on conditions in estuaries where the bathymetric dimensions (length, depth and shape) and excitation ‘period’, P, result in the estuarine mouth coinciding with this node with consequent resonant amplification. This occurs when

$$y = 0.75 \nu + 1.25$$

with
\[y = \frac{4 \pi L}{P (2 - m) (g D)^{1/2}} \]
(2)

where \(L \) and \(D \) are the estuarine length and depth (at the mouth), and \(m \) is the power of axial depth variation (0.5, 1 or 1.5 noted above).

Figure 2 indicates the corresponding resonant periods for a range of both \(L \) and \(D \). Results for \(m = 1 \) are within 10% of those for \(m = 0.5 \) and \(m = 1.5 \), hence only those for \(m = 1 \) are shown. By utilising the formula

\[L = \frac{120}{f^{1/2}} D^{5/4} \frac{\zeta}{\zeta^{1/2}} \]
(3)

derived by Prandle (2003), with \(f \) the bed friction coefficient (assumed ~0.0025) and \(\zeta \) tidal elevation amplitude, values of \(L \) and \(D \) consistent with resonance at the M2 tidal period (12.42 h) can be calculated. These are shown in Table 1.

Table 1 Values of depth \(D \), at the mouth, and length \(L \) consistent with resonance at M2 tidal frequency

<table>
<thead>
<tr>
<th>(\zeta) (m)</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D(m)</td>
<td>L(km)</td>
<td>D(m)</td>
<td>L(km)</td>
</tr>
<tr>
<td>BAY m = 0.5</td>
<td>33.5</td>
<td>193.3</td>
<td>84.4</td>
<td>306.8</td>
</tr>
<tr>
<td>LINEAR m = 1.0</td>
<td>29.8</td>
<td>167.3</td>
<td>75.1</td>
<td>265.4</td>
</tr>
<tr>
<td>FUNNEL m = 1.5</td>
<td>26.3</td>
<td>142.7</td>
<td>66.2</td>
<td>226.4</td>
</tr>
</tbody>
</table>

These results show that resonance at semi-diurnal frequencies will only occur for \(D \geq 20 \) m and \(L \geq 140 \) km. The tidal reach of the Thames is approximately 95 km and the Humber 60 km. Hence, we only anticipate resonance for the semi-diurnal frequency in systems such as the Bristol Channel where the estuarine ‘resonance’ extends to the adjacent shelf sea. Thus, we do not expect dramatic changes in tide and surge responses in UK estuaries for anticipated changes in sea level of up to 1 m. Likewise increases in flood levels within estuaries are likely to be of the same order as the respective increases in adjacent open-sea conditions.

Some exception to the above is possible for surge response to secondary depressions (prevalent along the West Coast, Proctor & Flather, 1989) which can have effective periodicities of significantly less than 12 hours and hence may have resonant responses as indicated in Figure 2.

3. Intervention

Prandle (1989) examined the change in tidal response in estuaries due to variations in mean sea level where the location of the coastal boundaries remain fixed (i.e.
construction of flood protection walls). The results show the largest impacts will be in flat, shallow estuaries.

4. Effects of changes in river flow
For tidally-mixed estuaries with $m = 0.8$ (synchronous), Prandle (2003), the following relationship between river flow, Q, and depth at the mouth, D was derived (Prandle 2004a).

$$D = 12.8 (Qa)^{0.4}$$ \hspace{1cm} (4)

Where ‘a’, the transverse slope of the inter-tidal zone, is typically $0.01 > a > 0.001$. Hence we anticipate changes in depth δD for changes in flow δQ,

$$\frac{\delta D}{D} = 0.4 \frac{\delta Q}{Q}$$ \hspace{1cm} (5)

Moreover, since the same study derived the relationship (3) for estuarine length proportional to $D^{5/4}$, this indicates changes in estuarine length δL,

$$\frac{\delta L}{L} = 0.5 \frac{\delta Q}{Q}$$ \hspace{1cm} (6)

While such morphological adjustments might occur over decades, more immediate adjustment to salinity intrusion and associated mixing of fluvial contaminants might be expected. Since flushing times, F_T, are inversely proportional to Q (Prandle 2004b) we expect changes δF,

$$\frac{\delta F}{F} = - \frac{\delta Q}{Q}$$ \hspace{1cm} (7)

5. Change in sediment supply
Changes in the nature and supply of marine sediments, here we assume the supply of fluvial sediments to most UK estuaries is negligible in terms of its influence on morphology, can lead to abrupt changes in estuarine morphology. This supply can directly determine the nature of the surficial sediments and thereby bed roughness. Peculiarly, the derived relationship (4) between depth at the mouth and river flow is independent of bed roughness. However, from (3), the associated estuarine length should vary according to:

$$\frac{\delta L}{L} = - \frac{1}{2} \frac{\delta f}{f}$$

i.e. estuaries will shorten as sediments become coarser.

6. Changes in wave climate
Enhanced wave heights in shelf seas can increase the effective sea-surface roughness and thus increase surge heights. Conversely, in shallow water, waves may increase seabed roughness and reduce tide and surge heights. These same effects will occur within estuaries with some accompanying longer-term adjustments of flora and fauna.
(particularly salt marshes). Net effects within estuaries may show significant small scale variability, reflecting the additional exposure to wind (and wave) direction.

Validation
The validation of these methods is being furthered in Defra project FD2107. The methods are constructed to help understand the behaviour of estuaries rather than to provide accurate predictions.

References

Figure 1 Estuarine dimensions proportional to x^{**m}
Figure 2 Contours of resonant periods (in hours) as \(f(D,L) \)
2.4 Results obtained from the interrogation of data

2.4.1 EP10 - Algorithms for salinity, velocity, SPM, and mudflat characteristics (PML-Uncles)

Aim To produce a set of algorithms for selected estuarine parameters from existing datasets analysed during the EstProc project. The work is listed here in sections A to E followed by the corresponding separately numbered algorithms.

A. The influences of weather, freshwater runoff (especially strong runoff) and tides on water levels and salinity intrusion at two sites in the upper Tamar Estuary were investigated. Results are presented for data measured at high water (HW) during 1988 and 1989, together with numerous along-estuary salinity surveys in the Tamar during 1981, 1982 and 1985.

- Salinity intrusion in the Tamar:
 - Salinity intrusion was strongly related to runoff, with less dependence on tidal range.
 - Salinity stratification was strongly related both to runoff and tidal range.

- Peak near-bed salinity:
 - This was strongly, positively related to HW level at low runoff – the relationship was much weaker at higher runoff.
 - It was strongly, negatively related to runoff.
 - It was strongly related to longer-term (2 – 8 day) winds and atmospheric pressure.

B. Analyses of field surveys over intertidal areas in the central Tamar Estuary have been made to quantify the seasonal and tidal variability of some key physical and biological properties of intertidal mudflats and their dependence on hydrodynamics. The analysis also utilised a flow model, derived at PML, that had spatial, cross-sectional dependence (Uncles et al., 2003). There was insufficient time in this project to analyse data for wave behaviour.

- Velocity data:
 - Transverse distributions of longitudinal current velocity, derived from ADCP measurements over a cross-section, exhibited large differences in speeds and phases between the main channel and intertidal areas.
 - Even small amounts of channel curvature apparently produced striking differences in section morphology.
 - Model results showed strong similarities with measured data, such that main-channel currents were faster than those on the mudflats except around HW, at which time mudflat currents had started to ebb while main-channel currents were still on the flood.
 - The model results also showed that simulated currents on the upper mudflats, very near to the shorelines, were ebbing, if only very slowly, throughout their brief periods of submergence.
Seasonal variations:
- Seasonal variations in ‘physical’ mudflat properties were relatively small.
- Biological variations were large and EPS (extra-cellular polymeric substances) in the surface 0.002 m had a dominating influence on the critical erosion threshold (CET) of mudflat sediment.
- During ‘bloom’ conditions the stress exerted by water flows was too small to cause suspension of sediments, in the absence of waves, and the intertidal areas were depositional.

C. Analyses were made of longitudinal surveys along the upper Humber and Ouse, which can have a bore-like tidal wave in the upper reaches, which utilised profiling throughout the water column of salinity, suspended particulate matter (SPM) and temperature. The data included spring-neap, seasonal and tidal variability. The Humber-Ouse had a strong estuarine turbidity maximum (ETM) in its low salinity reaches (Uncles et al., in press (a)).

Seasonal variations in SPM:
- The ETM location and magnitude were strongly related to runoff and the spring-neap cycle. It was more than 50 km from the tidal limit in winter and less than 30 km in summer.
- SPM stratification was related to runoff and tidal range and ceased only where SPM concentrations were very low, close to the tidal limit.
- Fluid mud layers and stationary suspensions sometimes occurred near to the bed and SPM concentrations sometimes exceeded 100 g/l. These layers were stationary or had very slow current speeds within them.

D. Analyses were made of vertical profiles of temperature, salinity, velocity and SPM concentration and, occasionally, in-situ floc sizes over tidal cycles in the upper Humber and Ouse (Uncles et al., in press (a, b)).

Vertical profiles of SPM:
- At HW these profiles were characterised by flocculation and settling, with the largest flocs observed at mid-depth.
- Strong seasonal variations in SPM concentrations were related to seasonal movements of the ETM.
- Entrainment of flocs from near-bed suspensions during fast currents and strong shears led to their disruption.
- Floc sizes in the ETM appeared to be smaller (~100 microns) than elsewhere in the estuary, although this remains to be confirmed.
- Maximum floc sizes in the bulk of the water column (~ 500 microns) occurred down-estuary of the ETM, near mid depth at HW. Sizes there typically were 100-300 microns.
- Floc sizes in near-bed stationary suspensions could exceed 800 microns.

E. Analyses have been made of the grain sizes of primary and flocculated suspended sediments and their particulate organic carbon content (POC) via loss on ignition (LOI), as well as of intertidal sediment properties along the Humber and Ouse (Uncles et al., in press (c)).
• Sediment characteristics:
 − SPM that comprised the ETM was largely inorganic (mineral) fine sediment (LOI ~10%).
 − The primary SPM was such that greater than 40% by volume of the solids was very fine silt and clay sized (< 4 µm) and greater than 20% (typically 30%) was < 2 µm (clay-sized).
 − Bed-sediment grain-sizes varied throughout the region and were much coarser than the SPM, although the great majority of bed sediment was smaller than 500 µm.
 − The dominant bed-sediment fraction down-channel of the ETM was fine sand; within the ETM the bed sediment was predominantly fine sand and very fine sand; up-estuary of the ETM the bed sediment was mainly very fine sand and compacted silt and clay-sized material.

• Seasonal variations in sediment properties:
 − A strong seasonal, longitudinal transport was found to occur both in subtidal and intertidal sediments.
 − Over the winter period, the up-channel margin of very fine sand moved down-estuary and left a scoured, highly cohesive mud bed.
 − Sand was transported back into the upper reaches by flood-dominant tidal currents during low inflow, summer and autumn periods.
 − The intertidal banks of the upper reaches utilised very fine sand to grow during summer and autumn.

Algorithms

1. **EP10.1: Regression relationships for suspended sediment and salt intrusion in terms of runoff for the Tamar**

 • Input of SPM from the River Tamar

 There appears to be no correlation between freshwater SPM concentration and daily-averaged river inflow, \(Q_1 \), for flows less than 10 m\(^3\) s\(^{-1}\), although a power-law dependence of SPM on inflow is fairly realistic at higher flows. The regression relationship is such that when \(Q < 10 \text{ m}^3 \text{ s}^{-1} \) the SPM concentrations, \(P \), are 5 mg l\(^{-1}\), whereas for higher inflows (\(Q_1 \text{ in m}^3 \text{ s}^{-1} \)):

 \[
P = 5\left(\frac{Q_1}{10}\right)^{1.2} \text{ mg l}^{-1}
 \]

 • Salt Intrusion

 The location of the limit of saline intrusion (or freshwater-saltwater interface, FSI) at HW depends mainly on the freshwater runoff across the head of the estuary. The spring-neap influence is slight. The distance of the FSI from the head, \(X_S \), is correlated with the daily runoff, \(Q_1 \). The FSI is taken here to be the point at which the 1-isohaline contour intersects the bed of the estuary. For runoff less than about 20 m\(^3\) s\(^{-1}\) the FSI is less than 10 km from the head at HW of spring and neap tides. The regression relationship between FSI location at HW and freshwater runoff is:
\[X_S = 3.6(Q_1)^{0.27} \text{ km} \]

- **ETM Location**

The location of the ETM at HW of spring tides is usually associated with the FSI. When the freshwater runoff is less than about 10 m\(^3\) s\(^{-1}\), which typically is the case during summer periods, the ETM is located somewhat up-estuary of the FSI at HW. This separation is in the range 1-3 km and occurs when the FSI location at HW is less than about 7 km from the head; it is more pronounced when the FSI is close to the head. A regression relationship between the ETM location (\(X_P\), km from the head) and daily runoff, \(Q_1\), is:

\[X_P = 1.7(Q_1)^{0.48} \text{ km} \]

- **Salt Intrusion and ETM Location in the Tavy**

In the Tavy Estuary, which is 5 km long and a sub-estuary of the Tamar, the salt intrusion and the location of the ETM as functions of daily freshwater runoff \(Q_1\) and tidal range TR (m) are:

\[X_S = 0.96(Q_1/TR)^{0.40} \text{ km} \]

and

\[X_P = 0.82(Q_1/TR)^{0.80} \text{ km} \]

2. **EP10.2: Regression relationships between various mudflat variables for the Tamar**

There were strong correlation relationships between several of the intertidal mudflat properties (Uncles et al., 2003).

- **Silt and Clay Fraction**

The percentage silt and clay within the upper 0.01 m of the sediment bed, SC, is strongly, negatively correlated with its bulk density, BD (g ml\(^{-1}\)). Therefore, finer sediment mixtures (greater silt and clay fractions) are able to hold more water (reduced bulk density) than coarser mixtures:

\[SC = 295 – 171BD \% \]

- **Bulk Density**

The bulk density, BD, within the upper 0.01 m of the sediment bed is strongly, negatively correlated with sediment moisture content (MC in % - the percentage mass of water to mass of dry sediment in a sample):

\[BD = 1.57 - 0.00168MC \text{ g ml}^{-1} \]

- **POC**
In the upper 0.01 m of the mud bed, the particulate organic carbon (POC, % of dry sediment) is strongly, negatively correlated with sediment bulk density. This demonstrates that finer sediment mixtures (with more water and reduced bulk density) are associated with a greater organic content (per unit mass of dry sediment) than coarser sediments:

$$POC = 13.6 - 7.64BD\%$$

- EPS

In the upper 0.002 m of the mud bed, the colloidal carbohydrate content of sediment (EPS, expressed as glucose equivalents in mg g$^{-1}$ of dry sediment) is strongly, positively correlated with the chlorophyll-a fraction of the sediment (CH, in µg g$^{-1}$ of dry sediment):

$$EPS = -0.0317 + 0.0107CH\text{ mg }g^{-1}$$

3. **EP10.3: Regression relationships for seasonal variations in SPM and Salt Intrusion in terms of runoff in the Humber-Ouse**

- Input of SPM from the River Ouse

There appears to be no correlation between freshwater SPM concentration and daily-averaged river inflow from the River Ouse, Q_1, for flows less than 25 m3 s$^{-1}$, although a power-law dependence of SPM on inflow is fairly realistic at higher flows. The regression relationship is such that when $Q<25$ m3 s$^{-1}$ the SPM concentrations, P, are 5 mg l$^{-1}$, whereas for higher inflows:

$$P = 5(Q_1/25)^{1.4}\text{ mg l}^{-1}$$

- Salt Intrusion

A multiple regression of the location of the saline intrusion, X_S, in terms of Q_{31}, where Q_{31} is the inflow averaged over 31 days preceding the survey, explains much of the variance in X_S (see Uncles et al., in press):

$$X_S = 21(Q_{31})^{0.23}\text{ km}$$

- ETM Location

A multiple regression of X_P in terms of Q_{31} and TR explains much of the variance in X_P. Both variables have a statistically significant influence on X_P. Increasing Q_{31} increases X_P so that the ETM moves down-estuary. Increasing TR decreases X_P and moves the ETM closer to Naburn Weir. Compared with the influence of freshwater inflow the tidal effect in this system is secondary and will be ignored. Thus a relationship for X_P can be proposed (see Uncles et al., in press):

$$X_P = 17(Q_{31})^{0.31}\text{ km}$$

References

Uncles, R.J., Stephens, J.A., Harris, C. In press. Runoff and tidal influences on the estuarine turbidity maximum of the highly turbid Humber Estuary, UK. Marine Geology.
2.4.2 EP11 - Algorithm for the effects of suspended sediment on turbulence within an estuarine turbidity maximum (UOP-Dyer)

Aim
Analysis and interpretation of existing field data for turbulence and sediment properties within an estuarine turbidity maximum.

Background
There is a poor understanding of the formation and entrainment of near bed high concentration layers, because of the interacting effects of the density on the turbulence, the shear stresses and the velocity field. The results of a field study undertaken during the EC COSINUS project, have been analysed to help understand the effects of high concentration sediment suspensions upon the nature of near-bed turbulence. In this study, measurements of current velocities, associated turbulence and flow characteristics were measured within and above a high concentration near bed layer in the turbidity maximum of the Tamar Estuary. Two pairs of electro-magnetic flowmeters were orthogonally mounted on a bed frame at two separate heights to capture the mean and fluctuating velocities in the along-stream, lateral and vertical directions. Simultaneously, profiles of suspended sediment concentration, salinity, and temperature were obtained. Detailed examination of results obtained over several tidal cycles led to the selection of two spring ebb tides when criteria relating to the orientation of the EM flowmeters were satisfactory. Because of the narrowness of the lutocline, with gradients in excess of 15 kgm\(^{-4}\), it is inherently difficult to characterise the gradient Richardsons numbers in anything other than general terms. This restricts comparison of the results with theory.

Turbulent shear stresses are difficult to determine when wave motions are present, and shear stresses were calculated both from the turbulent kinetic energy (TKE) and as the Reynolds stress. Intermittent internal waves were important features of the turbulence, especially at higher Richardson numbers (> 0.15) and above the lutocline. At lower Richardson numbers internal waves were less significant. Attempts to categorise the internal waves showed them to be a complicated mixture of progressive and standing waves, with the proportions and amplitudes varying at different times. At lower Richardson numbers the ratio of measured vertical to horizontal turbulent intensities were similar to clear water values (0.4-0.7), increasing away from the bed. The TKE and the shear stress derived from it were greater at the lower height. At higher Richardson numbers the TKE was greater at the upper height, and the ratio of vertical to horizontal turbulence intensities exceeded 1.0, and reached 1.6 when internal waves were present. Additionally, internal waves increase the total magnitude of the fluctuations, without necessarily affecting the turbulent stresses, depending on the phase relationships created by the standing and progressive nature of the waves. As the internal wave effects are greatest above the lutocline, this leads to the fluctuations being smaller within the lower layer, and TKE shear stresses larger at the upper level.

Results
Comparison between shear stresses calculated from the turbulent kinetic energy, and via the Reynolds stresses showed 'inactive turbulence' occurring at stresses less than about 0.2 Nm\(^{-2}\) both within and above the high concentration layer. Consequently, there are disorganised motions present at low stresses that may exchange mass, but not momentum. Thus stresses below this magnitude are unlikely to create break-up of flocs, but are more likely to promote aggregation, as well as allowing settling.
During the periods of inactive turbulence, calculated turbulent Reynolds fluxes of suspended sediment showed that negative suspended sediment fluxes often occurred, adding a downward flux similar in magnitude to that due to advective settling. This indicates that the turbulence could significantly enhance settling of the sediment. Additionally, downward fluxes intermittently occurred at higher stresses within the high concentration layer. This suggests that within the layer a modest amount of turbulence may increase the settling of sediment. This settling 'threshold' needs to be incorporated in mathematical models. Additionally, the presence of internal waves appear to increase the variability of the Reynolds fluxes of suspended sediment, also allowing downwards sediment fluxes at other times, especially beneath the lutocline.

Quadrant analysis of the direction and sign of turbulent velocity fluctuations showed that above the lutocline sweeps, strong downwards vectors, and ejections, weaker upward vectors, each contributed about 33% of the overall stress, the same as for clear water. The inward and outward interactions together occupied 30% of the time. However, beneath the lutocline the density layering appeared to rotate the ellipse enclosing the limits of the fluctuations, and reduce the contribution of all four quadrants to 24-28%, thus relatively increasing the duration of the interaction events. These changes must occur by a reduction in the magnitude of both the horizontal and vertical fluctuations, but a relative increase in the vertical contributions at the expense of the horizontal.

Examination of the quadrant relationships of the velocity and concentration fluctuations show that differences in the sign and magnitudes of the Reynolds fluxes arise because of the details of the way in which the profile of concentration interacts with the velocity fluctuations. Downwards motions must be correlated with low concentrations and upward motions with high concentrations. Above the lutocline where the profile variation of concentration is small, the downward motions cannot create a large downward flux of sediment, whereas the upward motions create a large upward flux. Similarly, below the lutocline upward motions produce relatively large upward fluxes, because of the high concentration, and downward motions create lesser downward fluxes. As a consequence of the actions occurring simultaneously at both levels, a sweep would tend to enhance the lutocline, whereas an ejection would lessen the intensity of the lutocline. During the increased duration of the interaction phases, downward fluxes would occur by settling. The overall effect of the turbulent bursting cycle may then depend crucially on the way in which the velocity fluctuations in the burst are modified by the presence of the lutocline, as well on the period when there is inactive turbulence.

Physical explanation and challenges
A physical explanation for the unexpected enhancement of the vertical fluctuations at the expense of the horizontal, in terms of the structure of the water motions, seems to lie in the observed complicated interaction of standing and progressive waves. Incorporating these internal waves into mathematical models will require careful specification of their properties.

Because of the importance of internal waves to the specification of the fluxes, further more detailed measurement is required in order to parameterise adequately turbulence in transport models.
Algorithm
The upper limit for gravitational settling may be extended to stresses of 0.2 Nm\(^{-2}\). Within this range, the flux of settling sediment could be doubled.

Reference
2.4.3 EP12 - Algorithm for the Dimensional Relationships of Estuaries (UOP-Dyer)

Aim To provide improved relationships between estuary dimensions and physical driving processes

Background
The O'Brien relationship states that there is an empirical power law relationship between the cross sectional area of the estuary mouth, and the tidal prism. Also it is frequently assumed for morphological modelling that the O'Brien relationship holds for cross sections and tidal prisms of subsections of an estuary. The relationship has been investigated by a large number of authors for estuaries from around the world in order to try to establish empirical rules by which prediction can be carried out. It is apparent that no one set of constants is universal, and that tidal velocities, characterised by the tidal prism, have to be modified by inclusion of factors relating to the type of the estuary, the geology, availability of sediment, and littoral processes. These factors have recently been examined comprehensively by Townend (2005) for 66 British estuaries. He concluded that geological history and availability of sediment are important, and an improvement can be made by allowing for estuary length, and for frictional effects. However, river flow is important in many estuaries. Additionally, the cross sectional area at the mouth can be defined in a variety of ways, normally as the area at high spring tide. In the study reported here, river flow is considered, as well as the fact that the maximum tidal velocity normally occurs at about mean tide level, rather than at high water. For the river flow component the maximum spate discharges have been considered, as they are likely to be important in determining the morphological response of those estuaries where river flow exerts an influence.

Method
The dimensions of 96 estuaries from England and Wales detailed in the FUTURECOAST datafiles (Burgess et al, 2002) have been examined, corrected where necessary, and extended and updated. This is an extension of work done originally in EMPHASYS – ERP1 (EMPHASYS Consortium, 2000).

However, the quality of some of the data remains inherently unsatisfactory. The normal O'Brien analysis shows that there are no universal coefficients that can be generally used. Differences between estuaries appear to relate to the sediment quantities that have been available to fill the estuary and provide a sediment balance. This means that there can be delays between the formation of the estuary and the achievement of a sedimentary balance, and these can be of the order of thousands of years. Also the presence of rock, or a harder substrate, limits the amount of adjustment possible in the mouth cross section to increases in current velocity required by increases in the tidal prism. Additionally, the magnitude of sedimentary processes active around the mouth determine whether spits can develop, and their presence can hinder the ready availability of finer sediment to fill the inner estuary. Man made training walls and jetties have a similar effect. Also, reclamation of intertidal areas change the currents through the mouth and require a change in cross sectional area to produce a balance. In some cases tendency for change in cross sectional areas may have been altered by dredging of the navigation channel.
River Discharge

The river discharges into each estuary from the river catchment have been taken from the Hydrological Data UK, Hydrometric Register and Statistics 1991-95, as detailed in the FUTURECOAST database. During the tidal cycle, the river discharge increment during the flooding tide should appear as part of the calculated tidal prism volume. The discharge increment during the ebb tide, however, will enhance the tidal flow. Consequently, the tidal prism is increased by the river discharge volume totalled over six and a quarter hours.

Results for a comparison between the high water tidal prism and the tidal prism plus the ebb tide increment of river flow is shown in Figure 1. It is apparent that for a majority of estuaries the inclusion of river flow would not affect the O’Brien relationship significantly. However, for some estuaries the deviation is large. The Tyne and the Parrett, for instance, are narrow estuaries with comparatively large catchments that have been modified and trained for industrial purposes and to prevent flooding. The Dovey and the Conwy, in comparison, drain mountainous areas with high rainfall, and their valleys are in resistant rocks. Of particular note are the small estuaries, such as the Teifi, the Ogmore and the Tweed, where the river flow increment during spates can be much larger than the tidal prism.

Thus, deviation of the points from the line of equality is related to the flow ratio, the ratio of the river flow to the tidal prism. Points unaffected by river flow represent well mixed estuaries, and those departing from the line are increasingly stratified at maximum river flow. At those times the river flow and river borne sediments are likely to dominate the estuarine morphodynamics.

![Figure 1](image-url)

Figure 1 The high water tidal prism versus the tidal prism including the ebb tide increment of river flow. The line shows equality

Tidal Phase

The maximum velocity through the mouth of an estuary, which should be the most morphodynamically important current, does not occur at high water, but at around mean...
tide level. The effect of the phase of the current is shown in Figure 2 by comparison of the high water cross sectional area with that at the mean tide level.

For all estuaries there is a reasonable linear trend that continues for the large estuaries such as the Severn and the Wash, which are outside the axes plotted for this figure. This would have the effect of reducing the constants in the O'Brien relationship. However, the cross sectional area of the shallow high tidal range estuaries, such as the Solway and the Dee, is affected more than estuaries, such as the Thames, Plymouth and the Mersey, that have mouths with jetties, embankments or training walls. The effect will be large also for small estuaries where the tidal range is comparable with the water depth.

The scatter in the points, in terms of the cross sectional area, is likely to be related to the intertidal area ratio, the ratio of the intertidal area to the total high water surface area. This, however, will be modified by littoral processes occurring at the mouth, and the formation of enclosing spits.

Figure 2 High water cross sectional area versus half tide cross sectional area. The line shows equality

Use of algorithms
A comparison of plots of the O'Brien relationship, using the traditional high water cross sectional area and the tidal prism, with the values discussed above of half tide cross sectional area and the river flow enhanced tidal prism does not provide any significant improvement over previous approaches in reducing the scatter. It is apparent that there are too many factors that need to included and parameterised to provide a realistic empirical formula. Definition and prioritisation of the factors becomes subjective and they are difficult to quantify. Consequently, dimensional relationships have to be determined on an individual estuary basis, and applying the results obtained for the whole estuary to other cross sections within an estuary may not be valid. Success is likely to be greatest in morphodynamically active, well mixed estuaries where the mouths are relatively well defined.
Reference

2.5 Representation of near bed stresses

2.5.1 EP 13 - Algorithm for wave-current bed shear stresses (HRW – Soulsby)

Algorithm Version number 2-1

Aim To calculate bed shear-stresses due to combined waves and currents acting on smooth and rough beds.

Scientific background
Calculations and numerical modelling of the erosion, transport and deposition of sediments in estuaries and coastal areas rely heavily on expressions that contain the bed shear-stress, representing the friction exerted by the flowing water on the bed. In general the bed shear-stress is generated by the combined effects of waves and currents, whose turbulent boundary layers interact non-linearly. Many analytical and numerical models of bed shear-stresses due to wave-current interaction on rough beds already exist, because of their importance for sediment transport calculations. However, they generally require computationally-intensive solution, so that they are unsuitable for the repeated calculations needed in morphodynamic models of coastal and estuarine processes. In addition, much less attention has been given to the case of smooth beds such as freshly deposited mud in estuaries. The new method developed in EstProc provides an explicit set of formulae to predict the mean, maximum and root-mean-square bed shear-stress for any combination of waves for any flow regime (full derivation presented by Soulsby and Clarke, 2004). It includes different but compatible methods for laminar, smooth-turbulent and rough-turbulent flows, and automatically determines which case to use. It is based on an analytical solution of the equation of motion with a turbulence closure given by a time-independent, vertically varying eddy viscosity.

Improvement in understanding
The new method improves on existing methods because:

- it can be expressed with explicit algebraic formulae, simplifying and speeding up calculations
- it is based on physics, so improves on existing purely empirical methods
- it deals with all of laminar, smooth-turbulent and rough-turbulent regimes, which most other methods do not
- it has been tested against published laboratory data, and gives good agreement.

Implementation
The algorithm is written in a step-by-step “recipe” style, which can easily be coded for computer application. A corresponding FORTRAN code has also been written and tested. It comprises a subroutine that calls several other subroutines and functions, plus a calling (main) program to read inputs and write outputs to file. The main program can be used in stand-alone mode. The subroutine can be incorporated into larger FORTRAN models.
Algorithm

1. Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water depth (m)</td>
<td>h</td>
<td>m</td>
</tr>
<tr>
<td>Water density (kg m$^{-3}$)</td>
<td>ρ</td>
<td>kg m$^{-3}$</td>
</tr>
<tr>
<td>Kinematic viscosity (m2 s$^{-1}$)</td>
<td>ν</td>
<td>m2 s$^{-1}$</td>
</tr>
<tr>
<td>Median grain diameter of bed (m) (d_{50}) ($= 0$ for smooth bed)</td>
<td>d_{50}</td>
<td>m</td>
</tr>
<tr>
<td>Wave orbital velocity amplitude (ms$^{-1}$)</td>
<td>U_w</td>
<td>ms$^{-1}$</td>
</tr>
<tr>
<td>Wave period (s)</td>
<td>T</td>
<td>s</td>
</tr>
<tr>
<td>Depth-averaged current speed (ms$^{-1}$)</td>
<td>\bar{U}</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>Angle between wave and current directions (degrees)</td>
<td>ϕ_d</td>
<td>°</td>
</tr>
<tr>
<td>Acceleration due to gravity (ms$^{-2}$)</td>
<td>g</td>
<td>m s$^{-2}$</td>
</tr>
</tbody>
</table>

2. Outputs

- Current-alone bed shear-stress (Nm$^{-2}$): τ_c
- Wave-alone bed shear-stress amplitude (Nm$^{-2}$): τ_w
- Mean wave-plus-current bed shear-stress (Nm$^{-2}$): τ_m
- Maximum wave-plus-current bed shear-stress (Nm$^{-2}$): τ_{max}
- Root-mean-square wave-plus-current bed shear-stress (Nm$^{-2}$): τ_{rms}

3. Calculate basic parameters

1. Convert ϕ_d to radians

 $$\phi = \phi_d \frac{\pi}{180}$$

2. Convert d_{50} to bed roughness length (rough flow)

 $$z_o = \frac{d_{50}}{12}$$

3. Calculate current Reynolds Number

 $$Re_c = \frac{U h}{\nu}$$ \hspace{1cm} (1)

4. Calculate wave semi-orbital excursion

 $$A = \frac{U_w T}{2\pi}$$ \hspace{1cm} (2)

5. Calculate wave Reynolds Number

 $$Re_w = \frac{U_w A}{\nu}$$ \hspace{1cm} (3)

6. Calculate drag coefficient for current for smooth turbulent flow

 $$C_{Ds} = 0.0001615 \exp[6(Re_c)^{0.08}]$$ \hspace{1cm} (4)

7. Calculate wave friction factor for smooth turbulent flow

 $$f_{ws} = 0.0521 \text{Re}_w^{-0.187}$$ \hspace{1cm} (5)

8. Calculate drag coefficient for current for rough turbulent flow

 $$C_{Dr} = \left[\frac{0.40}{\ln(h/z_o)}\right]^2$$ \hspace{1cm} (6)

9. Calculate wave friction factor for rough turbulent flow

 $$f_{wr} = 1.39 \left(\frac{A}{z_o}\right)^{-0.52}$$ \hspace{1cm} (7)
4. Determine flow regime

4.1 If \(\overline{U} = 0 \) and \(U_w = 0 \), then no flow
\[
\tau_m = \tau_{max} = 0 \quad (8)
\]

4.2 If \(\overline{U} > 0 \) and \(U_w = 0 \), then current-only flow
If \(Re_c \leq 2000 \), then laminar flow
\[
\tau_m = \tau_{max} = \frac{3pv\overline{U}}{h} \quad (9)
\]
If \(Re_c > 2000 \), then turbulent flow
Calculate \(\tau_{mr} = \rho C_Dr U^{-2} \) (rough) \((10a) \)
and \(\tau_{ms} = \rho C_Ds U^{-2} \) (smooth) \((10b) \)
then
\[
\tau_m = \tau_{max} = \max(\tau_{mr}, \tau_{ms}) \quad (11)
\]

4.3 If \(\overline{U} = 0 \) and \(U_w > 0 \), then wave-only flow
If \(Re_w \leq 1.5 \times 10^5 \), then laminar flow
\[
\tau_m = 0, \quad \tau_{max} = \rho Re_w^{-0.5} U_w^2 \quad (12)
\]
If \(Re_w > 1.5 \times 10^5 \), then turbulent flow
Calculate \(\tau_{wr} = \frac{1}{2} \rho f_{wr} U_w^2 \) \((f_{wr} \text{ from Eq. (7)}) \) \((13) \)
and \(\tau_{ws} = \frac{1}{2} \rho f_{ws} U_w^2 \) \((f_{ws} \text{ from Eq. (5)}) \) \((14) \)
then
\[
\tau_m = 0, \quad \tau_{max} = \max(\tau_{wr}, \tau_{ws}) \quad (15)
\]

4.4 If \(\overline{U} > 0 \) and \(U_w > 0 \), then combined wave and current flow
Calculate critical current Reynolds number
\[
Re_{c,cr} = 2000 + (5.92 \times 10^5 \times Re_w)^0.35 \quad (16)
\]
\[
Re_{w,cr} = 1.5 \times 10^5
\]
If \(Re_c \leq Re_{c,cr} \) and \(Re_w \leq Re_{w,cr} \), then laminar flow
\(\tau_m \) given by Eq. (A9)
\[
\tau_w = \rho Re_w^{-0.5} U_w^2 \quad (17)
\]
\[
\tau_{max} = \left[\left(\tau_m + \tau_w \cos \phi \right)^2 + \left(\tau_w \sin \phi \right)^2 \right]^{1/2} \quad (18)
\]
If \(Re_c > Re_{c,cr} \) or \(Re_w > Re_{w,cr} \), then turbulent flow
Calculate \(\tau_{mr} \) and \(\tau_{max,r} \) for rough flows using method given in Step 5
Calculate \(\tau_{ms} \) and \(\tau_{max,s} \) for smooth flows using method given in Step 6
If \(\tau_{max,r} > \tau_{max,s} \), then flow is rough turbulent
\[
\tau_m = \tau_{mr}, \quad \tau_{max} = \tau_{max,r} \quad (19a)
\]
If \(\tau_{max,r} \leq \tau_{max,s} \), then flow is smooth turbulent
\[
\tau_m = \tau_{ms}, \quad \tau_{max} = \tau_{max,s} \quad (19b)
\]
The values of τ_c and τ_w must be calculated for the flow regime determined in this sub-section for combined waves and currents. Thus τ_c and τ_w are given respectively by:

Eqs. (9) and (12) for laminar flow
Eqs. (10a) and (13) for rough turbulent flow
Eqs. (10b) and (14) for smooth turbulent flow.

5. Rough-turbulent wave-plus-current shear-stresses

Set $a_r = 0.24$

Calculate $T_1 = \frac{\delta}{z_o} = \max\{12, a_r\left(\frac{f_{wr}}{2}\right)^{\frac{1}{\alpha}}\left(\frac{A}{z_o}\right)\}$ (20)

with f_{wr} from Eq. (A7)

$T_2 = \frac{h}{\delta} = \frac{h}{T_1 z_o}$ (21)

$T_3 = \frac{u_w}{U} = \left[C_{Dr}^2 + \left(\frac{f_{wr}}{2}\right)^2 \left(\frac{U_w}{U}\right)^4 \right]^{\frac{1}{2}}$ (22)

with C_{Dr} from Eq. (A6)

$A_1 = \frac{T_3 \ln(T_2) - 1}{2 \ln(T_1)}$ (23)

$A_2 = \frac{0.40 T_3}{\ln(T_1)}$ (24)

$C_{Dm} = \left[(A_1^2 + A_2)^{\frac{1}{2}} - A_1 \right]^2$ (25)

$C_{D_{max}} = \left[C_{Dm} + T_3 \cdot \frac{U_w}{U} \cdot \left(\frac{f_{wr}}{2}\right)^{\frac{1}{2}} \cdot \cos \phi \right]^2 + \left(T_3 \cdot \frac{U_w}{U} \cdot \left(\frac{f_{wr}}{2}\right)^{\frac{1}{2}} \cdot \sin \phi \right)^2 \cdot \left(\frac{f_{wr}}{2}\right)^2$ (26)

$\tau_m = \rho \cdot C_{Dm} \cdot U^2$ (27)

$\tau_{max} = \rho \cdot C_{D_{max}} \cdot U^2$ (28)

6. Smooth turbulent wave-plus-current shear-stress

Set $a_s = 0.24$

Calculate $T_1 = 9 a_s \cdot \frac{\text{Re}_w}{\frac{f_{ws}}{2}} \left[C_{Ds}^2 \left(\frac{U}{U_w}\right)^4 \cdot \left(\frac{f_{ws}}{2}\right)^{\frac{1}{2}} \right]$ (29)

with f_{ws} from Eq. (A5), C_{Ds} from Eq. (A4)

$T_2 = \left(\frac{\text{Re}_s}{\text{Re}_w} \cdot \frac{U_w}{U} \cdot \frac{1}{a_s} \cdot \frac{2}{f_{ws}} \right)^{\frac{1}{2}}$ (30)

$T_3 = \left[C_{Ds}^2 + \left(\frac{f_{ws}}{2}\right)^2 \left(\frac{U_w}{U}\right)^4 \right]^{\frac{1}{2}}$ (31)
Calculate A_1 from Eq. (23), A_2 from Eq. (24), C_{Dm} from Eq. (25), $C_{D_{\text{max}}}$ from Eq. (26) except replace f_{wr} with f_{ws}, τ_m from Eq. (27), τ_{max} from Eq. (25).

7. RMS shear-stress for waves plus current

Calculate τ_m using the methods given above appropriate to laminar, smooth-turbulent or rough-turbulent flow regime. The flow regime is determined by the criteria given in Section 4.4.

Calculate τ_w from Eq. (A17) if flow is laminar, or Eqs. (5) and (14) if flow is smooth turbulent, or Eqs. (7) and (13) if flow is rough turbulent.

Calculate root-mean-square shear-stress

$$\tau_{\text{rms}} = \left(\tau_m^2 + \frac{1}{2} \tau_w^2 \right)^{1/2} \tag{32}$$

8. Worked examples

The following inputs and outputs are provided so that users can check they get the same answers. The full step-by-step working is not given, since it would be rather lengthy.

8.1 Laminar flow

Inputs: $h = 0.1\text{m}$, $\rho = 1000\text{kgm}^{-3}$, $v = 1.0 \times 10^{-6}\text{m}^2\text{s}^{-1}$, $d_{50} = 0$ (smooth bed), $U_w = 0.2\text{ms}^{-1}$, $T = 10\text{s}$, $\bar{U} = 0.06\text{ms}^{-1}$, $\phi_d = 0^\circ$

Outputs: $(\tau_c, \tau_w, \tau_m, \tau_{\text{max}}, \tau_{\text{rms}}) = (0.0018, 0.1585, 0.0018, 0.1603, 0.1121) \text{Nm}^{-2}$

8.2 Smooth turbulent flow

Inputs: $h = 0.4\text{m}$, $\rho = 1000\text{kgm}^{-3}$, $v = 1.0 \times 10^{-6}\text{m}^2\text{s}^{-1}$, $d_{50} = 0$ (smooth bed), $U_w = 0.4\text{ms}^{-1}$, $T = 2\text{s}$, $\bar{U} = 0.3\text{ms}^{-1}$, $\phi_d = 75^\circ$

Outputs: $(\tau_c, \tau_w, \tau_m, \tau_{\text{max}}, \tau_{\text{rms}}) = (0.1530, 0.5492, 0.2194, 0.6518, 0.4460) \text{Nm}^{-2}$

8.3 Rough turbulent flow

Inputs: $h = 5\text{m}$, $\rho = 1000\text{kgm}^{-3}$, $v = 1.0 \times 10^{-6}\text{m}^2\text{s}^{-1}$, $d_{50} = 0.001\text{m}$, $U_w = 0.7\text{ms}^{-1}$, $T = 8\text{s}$, $\bar{U} = 0.5\text{ms}^{-1}$, $\phi_d = 90^\circ$

Outputs: $(\tau_c, \tau_w, \tau_m, \tau_{\text{max}}, \tau_{\text{rms}}) = (0.3998, 2.7353, 0.7292, 2.8448, 2.0670) \text{Nm}^{-2}$

9. Limits of applicability

The method can be applied to both laboratory and field conditions. Any combination of waves and currents at any angle, and from pure current through to pure wave, can be used. However, the method gives poor results for cases in the transitional regime, when the flow is laminar at some phases of the wave cycle and turbulent at others. The bed is assumed to be horizontal (say slopes of 0 to 1:20), and can be smooth (e.g. laboratory
steel-bedded flume, or freshly deposited mud in field conditions) or covered in (flat) sand or gravel. It can also be used for rippled sand provided that a suitable ripple scale is used instead of d_{50}. For ripples of height Δ_r and wavelength λ_r, an equivalent d_{50} grainsize of approximately $d_{50} = 12(\Delta_r^2/\lambda_r)$ could be used. For rippled beds the resulting shear-stresses are total stresses (including form drag of the ripples). For flat beds the shear stresses represent the skin-friction. The waves are assumed to be monochromatic, and given by a sinusoidally varying bottom orbital velocity. The velocity asymmetry under crest and troughs of steep waves is not taken into account. Waves are assumed to be non-breaking, since breaking-generated turbulence is not included. A spectrum of irregular waves must be approximated by a monochromatic wave (see Soulsby, 1997, p79). There are no formal limits to the input parameters, but the following are suggested as approximate limits of applicability.

- **Depth**: $0.1 \leq h \leq 100\text{m}$
- **Density**: $1000 \leq \rho \leq 1100 \text{ kg m}^{-3}$
- **Kinematic viscosity**: $1.0 \times 10^6 \leq \nu \leq 2.0 \times 10^6 \text{ m}^2\text{s}^{-1}$
- **Grainsize**: $0 \leq d_{50} \leq 1\text{m}$, with $d_{50} < 0.1h$
- **Wave orbital velocity**: $0 \leq U_w \leq 5\text{m s}^{-1}$
- **Wave period**: $1 \leq T \leq 30\text{s}$
- **Current speed**: $0 \leq \bar{U} \leq 5\text{m s}^{-1}$
- **Angle between waves and currents**: $0 \leq \phi_d \leq 360^\circ$. (NB since waves are treated as sinusoidal, there is no distinction between waves travelling “with” and “against” the current.)

Validation
Tests of the new method against data and existing methods are presented by Soulsby and Clarke (2004). The new rough-bed method agrees well with the earlier empirical “DATA2” method that was itself calibrated against extensive lab and field data. Tests of the new method against the same smooth-bed data (131 values) gave predictions of mean bed shear-stress that lay within factors of 1.1, 1.2, 1.5 and 2 for 26%, 52%, 82% and 90% of the observations respectively. No other existing rough-bed method gives better all-round agreement. The maximum bed shear-stresses were not able to be measured in these data-sets. The new smooth-bed method was tested against two sets of laboratory data. It gave significantly better agreement with the data than earlier methods. For the most appropriate set of smooth-bed data (80 values), the new method gave predictions of mean bed shear-stress that lay within factors of 1.1, 1.2, 1.5 and 2 for 30%, 41%, 68% and 75% of the observations respectively. It gave predictions of the maximum bed shear-stresses that lay within the above factors for 48%, 65%, 80% and 94% of the observations respectively. No other existing smooth-bed method gives better all-round agreement.

Gaps in knowledge
There appears to be a lack of data for field-scale (or full-scale laboratory) measurements of bed shear-stresses under combined waves and currents on smooth beds. The effects
of a mobile layer of sediment (mud or sand) on bed shear-stresses is poorly understood. Models that include wave-breaking turbulence are needed.

References

2.5.2 EP14 - Algorithm for bed roughness with Moveable Bed Model (ABP – Harris)

Aim To produce a prediction method for wave-generated ripple height and wavelength which can be implemented in ripple bed roughness predictors.

Method
In the present approach the method of Vongvisessomjai *et al.* (1987) has been adapted. This is an approach described in Harris (1997) to enable the prediction of field generated ripples, that is ripple geometry under irregular waves. The proposed model is based on Eqs. (1) and (2):

\[
\Delta(t) = \Delta_{\text{max}}(t) \left(1 - \exp\left[-B_n^*\left(\frac{t}{T_{zn}}\right)\right]\right)
\]

(1)

and

\[
\lambda(t) = \lambda_{\text{max}}(t) \left(1 - \exp\left[-B_n^*\left(\frac{t}{T_{zn}}\right)\right]\right)
\]

(2)

where \(B_n^*\) is defined as:

\[
B_n^* = 1.77 \times 10^{-6} a_n^{1.68} \psi_n^{-0.394}
\]

\[
B_n^* = 1.82 \times 10^{-4} a_n^{0.366} \psi_n^{0.432}
\]

and \(a_n^*\) is the relative bed smoothness and is given by:

\[
a_n^* = \frac{a_n}{d_{50}}
\]

\(a_n\) is the near-bed orbital amplitude such that \(a_n = \frac{u_n}{\omega_n} ; \omega_n\) is the near-bed velocity amplitude; \(\omega_n\) is the angular frequency and \(d_{50}\) the median grain diameter.

\(\psi_n\) is the mobility number and is defined as:

\[
\psi_n = \frac{(a_n\omega_n)^2}{(s-1)gd_{50}}
\]

where \(s\) is the specific gravity of the sediment, given by \(s = \rho_s/\rho\), where \(\rho_s\) is the density of the sediment and \(\rho\) is the fluid density.

The model allows \(T_z\) to vary, so for a given surface wave height time-series, \(n\) zero-upcrossing periods can be calculated along with the corresponding wave heights, \(H_n\). The quantity \(n\) denotes the number of zero-upcrossing periods in the given wave height record. Knowing \(T_{zn}\) and \(H_n\) allows the maximum near-bed orbital amplitude, \(a_n\), and
maximum near-bed orbital velocity, u_{∞}, to be calculated. From this, it is possible to calculate n values for the maximum possible ripple geometry, $\Delta_{\text{max}n}$ and $\lambda_{\text{max}n}$. Using these values and Eqs. (1) and (2) enables a time-series for the ripple geometry to be generated. For each nth value, the value of t within the exponential term is reset to zero, whilst leaving the actual time-series to run continuously. A ripple will continue to grow in height until the value of the present $\Delta_{\text{max}n}$ is reached. If for the $n+1$ value, the value of $\Delta_{\text{max}(n+1)}$ is smaller than $\Delta_{\text{max}n}$ the ripple height will start to decay. A similar process operates for the ripple length.

The value of $\Delta_{\text{max}n}$ was calculated using four existing predictors: Nielsen, Wiberg and Harris, Grant and Madsen, Mogridge et al.

Validation

For more information on application and testing of this algorithm see the report ABPmer (2004).

References

2.5.3 EP15 - Algorithm for representation of near bed stresses in an annular flume (PML – Widdows)

Aim To describe the relationship between current velocity \(U_{10} \) and bed shear stress in PML’s annular flumes for intertidal sediments with biota. To compare with measurements in the field (shallow water estuarine mudflats) over tidal cycles (spring tides) during calm weather conditions without wind / waves.

Scientific Background
There is a variety of *in situ* devices for measuring sediment erodibility. Several of these have been widely used to quantify sediment erosion in various field campaigns investigating the functional role of key intertidal biota (e.g. PML’s annular flumes, PML’s mini-flumes, SOC’s annular flumes, Cohesive Strength Meter (CSM), EROMES). Some of the erosion devices with smaller ‘footprints’ have a vertical jet or turbulent flow and are difficult to calibrate in terms of the shear stress applied to the bed. The size of PML’s annular flume and mini-flume are suitable for measurement of vertical profiles of current and turbulence. The use of Acoustic Doppler Velocimeters (ADV) has enabled us to establish the relationship between bed shear stress, determined by the Turbulent Kinetic Energy (TKE) method, and the current velocity at 10 cm above the bed, in PML’s annular flume, mini-flume and in the field (i.e. same smooth estuarine mudflats under calm weather conditions) (Figure 1).

Improvement in understanding
Numerical models of estuarine sediment dynamics and morphology need to incorporate biological as well as physical processes in order to represent the natural estuarine environment. Establishing relationships between current velocity, bed shear stress and drag coefficients for different types of bed and bed roughness, including those influenced by biota, are necessary to improve parameterisation of numerical models.

Implementation
The equation below is routinely applied to estimate bed shear stress from measurements of near bed current velocities \(U_{10} \). It is applicable to extensive areas in many estuaries where mudflats are composed of smooth fine sediments.

Algorithm

\[
\tau_0 = 0.4702U_{10}^3 + 1.152U_{10}^2 + 0.1553U_{10}
\]

where \(r^2 = 0.99 \)

Inputs:
\(U_{10} = \) Current velocity (m s\(^{-1}\)) at 10 cm above the bed. Suitable for a range of current velocities from 0.02 to 0.4 m s\(^{-1}\). Note that in PML’s annular flumes the \(U_{10} \) is very similar to the depth averaged current velocity.

Output:
\(\tau_0 = \) Bed shear stress (Pa)

This relationship was established in the flume and field using an ADV for measuring near-bed currents and bed shear stress (TKE method). It is plotted in Figure 1.
Figure 1 Comparison of flume and field derived relationships for bed shear stress (τ_0) against current velocity for Blaxton intertidal sediment (smooth mudflat). Field data collected every 15 minutes over 6 spring tides

Limits of applicability
The algorithm only applies to recently deposited fine sediment and smooth mudflats of cohesive fine sediment with minimum disturbance due to biota. The relationship applies to current velocities between 0.02 and 0.40 m s$^{-1}$.

Bed shear stress increases relative to current velocity with increasing bed roughness induced by grain size, bed ripples and biota.

Validation
The flume measurements of bed shear stress in relation to current velocity (U_{10}) for smooth cohesive fine sediment fall within the range of data recorded with the field ADV over a tidal cycle under calm weather conditions (field measurements in Blackwater, Crouch (Essex), and Tavy (SW England)).

Gaps in Knowledge
There is a need to establish algorithms for a wider range of sediment types and biotic influences and to calculate drag coefficients from the relationships.

References
Pope, N.D., Widdows, J. and Brinsley, M.D. Estimation of bed shear stress using turbulent kinetic energy (TKE) approach:- Comparison of annular flume and field data (submitted).
2.6 Transport of mixed sediments

2.6.1 EP16 - Algorithm for modelling sediment mixing in estuaries (WLD – Winterwerp)

Aim To calculate the sedimentation and flow-induced erosion rates of sand-mud mixtures

Scientific background See Sections 2.6.1.1 and 2.6.1.2 to this algorithm

Improvement in understanding This algorithm improves on existing formula because:

- it accounts for two different sediment fractions
- it accounts for the sedimentological nature of the bed
- its behaviour has been tested in a sensitivity analysis.

Implementation The new algorithm has been implemented in the operational DELFT3D software system.

This algorithm has to be implemented in existing solvers for the transport of sand and mud in suspension (two fractions). The model should contain a bed module consisting of a number of layers in which sand and mud can be stored upon deposition and released upon erosion.

Algorithm

Co-ordinate system
The vertical co-ordinate z within the bed is defined from the bed surface (i.e. $z = 0$) and positive downward.

Inputs
Note that superscripts are reserved for the sediment fractions sand (sa), clay (cl), silt (s), mud (m) and total (t); mud is the sum of the clay and silt fraction.

- total bed concentration (kg/m3) c_b^t
- sand concentration in the bed (kg/m3) c_b^{sa}
- boundary condition c_b^{sa} at base of bed model (kg/m3) $c_{ini,b}^{sa}$ \(\left(c_{ini,b}^{sa} \approx 1600 \text{ kg/m}^3 \right) \)
- mud concentration in the bed (kg/m3) c_b^m
- boundary condition c_b^m at base of bed model (kg/m3) $c_{ini,b}^m$ \(\left(c_{ini,b}^m \approx 0 \right) \)
- plasticity index bed sediment (-) Π
- equilibrium sand concentration in the water column (kg/m3) c_e^{sa} (from transport formula)
- sand concentration in the water column (kg/m3) c^{sa}
- mud concentration in the water column (kg/m3) c^m
- water depth (m) h
- bed mixing length (m) L_p \((L_p = 0.01 - 0.1 \text{ m}) \)
mud erosion parameter for non-cohesive bed (kg/m²/s) M_n^m
mud erosion parameter for cohesive bed (kg/m²/s) M_c^m
shear velocity (m/s) u^s
settling velocity for sand (m/s) W_{sa}^s
settling velocity for mud (m/s) W_{sm}^m
mixing coefficient (-) α_0 ($\alpha_0 \approx 10^{-6}$)
time step (s) Δt
form factor (-) γ ($\gamma \approx 1$)
sediment density (kg/m³) ρ_s
flow-induced bed shear stress (Pa) τ_b
critical bed shear stress for non-cohesive bed (Pa) $\tau_{e,n}$
critical bed shear stress for cohesive bed (Pa) $\tau_{e,c}$

Outputs
deposition rate sand (kg/m²/s) D_{sa}
erosion rate sand (kg/m²/s) E_{sa}
deposition rate mud (kg/m²/s) D_m^m
erosion rate mud (kg/m²/s) E_m^m

Algorithm

Assess sediment composition at bed surface
This algorithm models the mixing of mud within a sandy bed as a result of physical processes (bed form migration, waves, etc.) and of biological processes (bioturbation).

compute diffusion coefficient in bed
$$\epsilon_b = \alpha_0 u \cdot h \exp\{-z/L_p\}$$ (1)

compute boundary conditions at bed surface, i.e. at the top (top) of bed model
$$c_{new, top}^m = c_{old, top}^m + (D_{sa} - E_{sa}) \Delta t$$
$$c_{new, top}^s = c_{old, top}^s + (D_{sa} - E_{sa}) \Delta t$$ (2)

boundary conditions at base of bed model (base)
$$c_{new, base}^m = c_{ini, base}^m$$
$$c_{new, base}^s = c_{ini, base}^s$$ (3)

compute total mass concentration
$$c^t = c^m + c_{sa}^s$$ (4)

compute mud fraction
$$\xi^m = c^m / c^t$$ (5)

solve bed composition diffusion equation
$$\frac{\partial \xi^m}{\partial t} - \frac{\partial}{\partial z} \epsilon_b \frac{\partial \xi^m}{\partial z} = 0$$ (6)
Assess critical shear stress for erosion

\[\tau_{e,n} = \tau_{e,n,\text{input}} \] (7)

if \(\tau_{e,c} \neq 99999 \) then \(\tau_{e,c} = \tau_{e,c,\text{input}} \)
else \(\tau_{e,c} = 0.163 \pi^{0.84} \) (8)

Assess mode of erosion

If \(\xi^m \leq 0.3 \) than non-cohesive bed
If \(\xi^m > 0.3 \) than cohesive bed

Note that in case of a constant silt-clay ratio 4:1, this would yield a critical clay content of 6%.

Water-bed exchange for non-cohesive bed

If \(\tau_b \leq \tau_{e,n} \) then

\[E^a - D^a = \gamma W_s^a \left(c_e^a - c_s^a \right) \]
\[E^m = 0 \]
\[D^m = W_e^m c^m \] (9)

If \(\tau_b > \tau_{e,n} \) then

\[E^a - D^a = \gamma W_s^a \left(c_e^a - c_s^a \right) \]
\[E^m = \xi^m M^a \left(\frac{\tau_b - \tau_{e,n}}{\tau_{e,n}} \right) \]
\[D^m = W_e^m c^m \] (10)

Water-bed exchange for cohesive bed

If \(\tau_b \leq \tau_{e,c} \) then

\[E^a = 0 \]
\[D^a = W_s^a c^a \]
\[E^m = 0 \]
\[D^m = W_e^m c^m \] (11)

If \(\tau_b > \tau_{e,c} \) then
Limitation of application
The formula presented in this algorithm describe floc and surface erosion. Mass erosion is not covered. Moreover, this model can be applied at low suspended sediment concentrations only (i.e. below a few 100 mg/l). Equation (6) does not allow for morphological changes.

Validation
The algorithms have been tested through a sensitivity analysis on a tidal inlet and basin in the Dutch Wadden Sea. They have not been validated directly against field or laboratory data.

2.6.1.1 EP16.1 - Classification of sand-mud mixtures

In this section the empirical/heuristic sediment classification diagram commonly used in sedimentology (e.g. Flemming, 2000) is quantified with the use of some soil mechanical tools. First, distinction is made between cohesive and non-cohesive soils. This is done with the so-called Activity Plot on basis of the Atterberg limits. An example is given in Figure A.1 for mud samples from the Port of IJmuiden, The Netherlands.

![Figure A.1 Activity-plot for IJmuiden mud (Winterwerp & Van Kesteren, 2004)](image)

The plasticity index PI is defined as $\text{PI} = \text{LL} - \text{PL}$, where LL is the liquid limit and PL is the plastic limit. The clay content ξ_{cl} is defined as the sediment fraction with particle size $< 2 \, \mu\text{m}$. The intercept ξ_{0} of the fit through the data with the ξ-axis (i.e. at $\text{PI} = 0$) yields the critical clay content beyond which the sediment acquires cohesive properties. Note
that in general $5\% < \xi_0 < 10\%$, whereas the slope A ($A = \nu/\xi^{1/\xi_0}$) of this fit is called the activity, which value is uniquely determined by the clay minerals involved.

The granular network structure of the sediment, also referred to as the sediment’s skeleton, is the second important parameter that governs the behaviour of sediment mixtures. Such a structure is sketched in Figure A.2.

Figure A.2 Network structure of granular material

The left panel of Figure 2 shows a tetrahedral packing of spherical grains; under deformation, the particles have to dilate. The grains in the right panel do not form a network structure and the grains are merely space filling. The cubic-centred packing in the middle panel is the most loose packing in which grains can still support each other – it is referred to as the critical packing. For spherical particles the critical porosity amounts to $n_c = 47.6\%$. The actual critical porosity for natural sediment depends on the roundness and uniformity (D_{60}/D_{10}) of the sediment; typically values are $40\% < n_c < 50\%$ (e.g. Winterwerp & Van Kesteren, 2004).

The granular composition (clay: $D < 2\mu m$; silt: $2 < D < 63\mu m$; and sand: $D > 63\mu m$) is plotted in the sand-silt-clay triangle, as in Figure A.3 for sediment from the Western Scheldt.
In Figure A.3 the demarcation between cohesive and non-cohesive beds (\(\xi_{cl} = 7\%\) for Western Scheldt sediment) is indicated by a horizontal line. By definition, the remoulded shear strength \(c_u\) of non-cohesive sediment is zero. We have also drawn lines for \(c_u = 100\) Pa and \(c_u = 100\) kPa. The remoulded shear strength is a material parameter that is easily determined and can be deployed to quantify the erodibility of cohesive sediment beds.

Next we draw the demarcation for network structure, i.e. the critical porosity for a sand skeleton and for a silt skeleton; in Figure A.3 we assume \(n_c = 40\%\) for illustration.

The cohesive and skeleton demarcation lines divide the sand-silt-clay triangle in six sub-zones distinguishing six modes of sand-mud behaviour:

1. non-cohesive sediment dominated by sand skeleton
2. cohesive sediment dominated by sand skeleton
3. non-cohesive sediment with unstable skeleton
4. cohesive sediment dominated by clay skeleton
5. non-cohesive sediment dominated by silt skeleton
6. cohesive sediment dominated by silt skeleton.
Note that the data from the Western Scheldt suggest that the ratio of clay and silt content is constant and about 1:4. Hence a critical clay content $\xi_{cl}^0 = 0.07$ corresponds to a critical mud content $\xi_{m}^0 = 0.35$. A similar observation was reported by Flemming (2000), but with different silt-clay ratios. It is therefore useful to combine the clay and silt fraction in the mud fraction. This is a very convenient observation, as it implies that the sediment composition can be measured through the sand content only, as $\xi_{sa} = 1 - \xi_{cl} - \xi_{s} = 1 - \xi_{m}$. This also agrees with an empirical relation derived by Allersma (1988):

$$\rho_{dry} = 480\alpha_c + (1300 - 280\alpha_c)\xi_{sa}^{0.8}$$ \hspace{1cm} (A.1)

which relates the dry bed density ρ_{dry} to the sand content ξ_{sa} only, and where α_c is a consolidation coefficient, ranging from $\alpha_c = 0$ for fresh deposits to $\alpha_c = 2.4$ for old, well-consolidated deposits.

These observations can be used to construct the sediment-phase diagram of Figure A.4, where the vertical axis now reflects the entire sediment composition from a granular point of view, and the horizontal axis the dry bed density. If the six modes of sediment behaviour are plotted within this graph, together with the empirical equ. (A.1), we note that in fact only three modes may occur in the Western Scheldt:

- mode 1: non-cohesive sand dominated behaviour,
- mode 3: non cohesive very loose (supercritical, i.e. sensitive to liquefaction) sand/silt skeleton, and
- mode 4: cohesive clay dominated behaviour.

This classification enables us to assess the behaviour of the seabed and to select appropriate formulae describing the erosion of sediment mixtures.

![Sediment-phase diagram for Western Scheldt sediments](image)

Figure A.4 Sediment-phase diagram for Western Scheldt sediments; the shaded area represents natural sediments, e.g. eq (1)
2.6.1.2 EP 16.2 - Erosion of sand-mud mixtures

Natural sediments often consist of a mixture of sand and mud (e.g. silt and clay). A conceptual framework to analyse and classify these sediment mixtures has been presented above.

A few studies on the behaviour of sand-mud mixtures have been reported in literature. Kandiah (1984) showed empirically that the effect of sand content on the erodibility of cohesive soils is a function of the SAR of the pore water. Kandiah reasoned that the strength of a bed is determined by clay-clay bonds and clay-sand bonds. At high SAR, the clay-clay bonds would be weaker than the clay-sand bonds, and an increase in clay content would result in a decrease in overall bed strength, i.e. an increase in erodibility. At small SAR the opposite would happen, and an increase in clay content yields an increase in overall bed strength.

In the 1990’s a number of laboratory experiments on sand-mud mixtures were carried out, e.g. Torfs (1995) and Williamson (1993 – see Chesher and Ockenden, 1997 and Whitehouse et al., 2000). Chesher and Ockenden (1997) schematised the results in a simple diagram that was used in a depth-averaged sediment transport model of the Mersey estuary. In this diagram, the critical shear stress for erosion \(\tau \) first increases and then decreases with increasing mud content, starting from a pure sand bed.

The various experimental data were further analysed by Torfs et al. (2001), who found that \(\tau \) increased with increasing mud content, except at mud contents of a few percent, when a small decrease in \(\tau \) was observed, as shown in Figure B.1. Note that Figure B.1 suggests an off-set in erosional behaviour, similar to the definition of \(\xi_0 \) (Figure B.1). Figure B.1 also shows the empirical relation equ. A.1 for the case the mud fraction equals the clay fraction, which was the case for the experiments of Torfs for various values of the activity \(A \). The measured data of Torfs appear to correspond well with an activity of \(A = 1.5 \left(A = PI / \left(\xi_{cl} - \xi_0 \right) \right) \).

Smerdon and Beasley (1959) found an empirical relation between \(\tau \) and PI:

\[
\tau_c = 0.163 PI^{0.84}
\]

(B.1)
Figure B.1 Critical shear strength for erosion as a function of mud content ξ^m (redrawn from Torfs et al., 2001)

Note that Van Ledden et al. (2004) found the behaviour of cohesive sediment mixtures, such as erodibility, is related to the clay fraction instead of the mud fraction.

Van Ledden (2003) presented a thorough analysis of the various studies on sand-mud mixtures. On the basis of this analysis, and on the classification of sand-mud beds, he proposed two heuristic erosion formulae. In the non-cohesive regime sand and mud particles behave independently and the individual sediment components do not affect the erodibility of the other constituent. Hence:

$$E^{sa} - D^{sa} = \gamma W_s \left(c_e^{sa} - c_e^{sa} \right)$$

$$E^m = \xi^m M^m \left(\frac{\tau_b - \tau_{e,c}}{\tau_{e,c}} \right) \text{ for } \tau_b > \tau_{e,c}$$ \hspace{1cm} (B.2)

where c_e^{sa} is the equilibrium concentration for sand and γ is a form coefficient.

In the cohesive regime, erosion is governed by the cohesive nature of the bed, and sand particles are passive: they are eroded with the mud particles at a rate proportional to their fraction:

$$E^{sa} = \xi^{sa} M^{sa} \left(\frac{\tau_b - \tau_{e,c}}{\tau_{e,c}} \right) \text{ for } \tau_b > \tau_{e,c}$$

$$E^m = \xi^m M^m \left(\frac{\tau_b - \tau_{e,c}}{\tau_{e,c}} \right) \text{ for } \tau_b > \tau_{e,c}$$ \hspace{1cm} (B.3)
Note that the thresholds for erosion of a cohesive and non-cohesive bed $\tau_{e,c}$ and $\tau_{e,n}$ may be different. However, we assume that in the cohesive regime, sand and mud are eroded at the same relative rate.

The bed composition is modelled with a diffusion equation proposed by Armanini (1995):

$$\frac{\partial \xi^{sc}}{\partial t} - \frac{\partial}{\partial z} \epsilon_{b} \frac{\partial \xi^{sc}}{\partial z} = 0$$

in which the bed diffusion coefficient ϵ_{b} is modelled as:

$$\epsilon_{b} = \alpha_{0} \mu_{b} h \exp \left\{ - z / L_{p} \right\}$$

Typical values for α_{0} and L_{p} are: $\alpha_{0} \equiv 10^{-6}$ and $L_{p} = 0.01 - 0.1$ m. See Van Ledden (2002 and 2004) for more details.

References

- Flemming, B.W., 2000, A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams, Continental Shelf Research, 20, 1125-1137.
- Kandiah, 1974, Fundamental aspects of surface erosion of cohesive soils, PhD-thesis, University of California, USA.

2.7 Understanding of the sediment transport profile

2.7.1 EP17 - Algorithm for understanding of the sediment transport profile
(HRW – Soulsby)
Algorithm Version 1

Aim To devise an analytical formula for the concentration of mud in a tidal flow, and examine how this varies with the properties of the mud.

Scientific background
Sophisticated numerical models of the erosion, suspension, transportation and deposition of mud in estuaries usually make use of rather simple formulae for determining the erosion and deposition rates in terms of the flow behaviour (especially the bed shear-stresses) and the physical properties of the mud. Traditionally the mud is described for modelling purposes by only four parameters:

- the threshold shear-stresses for erosion and deposition and the erosion-rate constant for the mud bed, and the settling velocity of the suspended mud just above the bed. (The settling velocity is sometimes made a function of the mud concentration, making five instead of four parameters.)

The present work examines how these four parameters interact with the flow-generated bed shear-stresses in the simplest possible representation of a tidal estuary to determine the concentrations of mud in suspension and the masses of mud eroded and deposited per unit area. This gives insight into the values of parameters to choose to simulate known behaviour in real estuaries, and the effect that variations in the parameters will have.

The estuary is assumed to be of uniform depth in both horizontal directions, and the mud properties to be horizontally uniform. The tidal depth variation is ignored, and the flow is represented by a repeating rectilinear tidal velocity such that the bed shear-stress varies sinusoidally as \(\tau(t) = \tau^\ast \sin(\omega t) \). The settling velocity of the suspended mud is treated as constant, and the concentration profile is schematised as a linear variation from bed to surface \(C(z) = C_b(1-\alpha z/h) \). The depth-averaged concentration is thus proportional to the bottom concentration by \(\bar{C} = \beta C_b \), where \(\beta = 1 - \alpha/2 \). The pattern of erosion and deposition through the tide then gives rise to a concentration of suspended mud that varies through the tidal cycle, and repeats periodically. The algorithm gives algebraic expressions for the bottom concentration at slack water, and the maximum and minimum bottom concentrations in the tidal cycle. The full derivation is given in Soulsby (2004).

Improvement in understanding
The algorithm gives the following benefits:

- it allows a rough estimate of the suspended concentration of mud to be made without the need to set up and run a full numerical model
- this estimate may be good enough for initial investigations into a practical problem, and desk-study solutions
• if measured calibration/validation data of concentrations is available for a study area, it enables the values of the various parameters to be set in a full numerical model to (approximately) reproduce this
• it gives insight into the way that the values of the various parameters interact to determine the concentrations, and the sensitivity to changes in the parameters.

Implementation
The algorithm is sufficiently simple that it can either be computed using a pocket calculator, or in a spreadsheet. An example of results from a spreadsheet is given later.

Algorithm

1. Inputs

Water depth (m) \(h \)
Tidal radian frequency (s\(^{-1}\)) \(\omega \) (= 1.41 \times 10^{-4} \) for \(\text{M}_2 \)
Amplitude of tidal bed shear-stress (N.m\(^{-2}\)) \(\hat{\tau} \)
Threshold shear-stress for erosion (N.m\(^{-2}\)) \(\tau_e \)
Threshold shear-stress for deposition (N.m\(^{-2}\)) \(\tau_d \)
Mud erosion-rate constant (kg.N\(^{-1}.\).s\(^{-1}\)) \(m_e \)
Settling velocity of flocs (m.s\(^{-1}\)) \(w_s \)
Ratio of depth-averaged concentration to bottom concentration \(\beta \)

2. Outputs

Bottom concentration at slack water (kg.m\(^{-3}\)) \(C_0 \)
Maximum bottom concentration through tidal cycle (kg.m\(^{-3}\)) \(C_{\text{max}} \)
Minimum bottom concentration through tidal cycle (kg.m\(^{-3}\)) \(C_{\text{min}} \)
Mass of mud eroded per half-cycle (kg.m\(^{-2}\)) \(M_E \)
Mass of mud deposited per half-cycle (kg.m\(^{-2}\)) \(M_D \)

3. Calculate basic parameters

Check that \(\tau_d < \tau_e < \hat{\tau} \) for validity of model assumptions

Calculate \(A \) (–)
\[
A = \frac{w_s \tau_d}{2 \omega \beta \hat{\tau}^2} \quad (1)
\]

Calculate \(C_s \) (kg.m\(^{-3}\))
\[
C_s = \frac{m_e \hat{\tau}}{\omega \beta h} \quad (2)
\]

Calculate \(\phi_E \) (radians)
\[
\phi_E = \sin^{-1} \left(\frac{\tau_e}{\hat{\tau}} \right) \quad (3)
\]

4. Calculate outputs

The mass of mud eroded per unit area of bed in one tidal half-cycle is obtained by integrating the erosion rate while \(\tau > \tau_e \):
The mass of mud *deposited* per unit area of bed in one tidal half-cycle is obtained by integrating the deposition rate while $\tau < \tau_d$:

$$M_B = 2\beta h C_o \sinh (A)$$

(5)

In Eq (5), the value of C_o is not yet determined. For an equilibrium repeating tide, the eroded and deposited masses per half-cycle are equal, so C_o can be obtained by equating Eqs (4) and (5):

$$C_o = \frac{C_s}{\sinh (A)} \left[1 - \left(\frac{\tau_c}{\tau} \right)^2 \left(\frac{\pi - \phi_E}{2} \right) \right]$$

(6)

The maximum concentration occurs at the end of the erosion phase, and is:

$$C_{\text{max}} = C_o \exp (A)$$

(7)

The minimum concentration occurs at the end of the deposition phase, and is:

$$C_{\text{min}} = C_o \exp (-A)$$

(8)

The bottom concentrations C_o, C_{max}, C_{min} can be converted to depth-averaged concentrations by multiplying them by the factor β.

Limits of applicability

The model is based on a number of simplifying assumptions that need to be at least approximately valid:

1. The flow and bed properties are assumed to be horizontally uniform, hence it is not expected to be accurate in areas where either the flow or the bed-composition vary rapidly with position (e.g. near headlands, in small bays, near sandbanks).
2. Advection of mud is neglected (corollary of the above assumption), which in many estuaries will be an important, and sometimes dominant, effect.
3. Only pure cohesive mud is considered, without sand present.
4. The concentration profile is assumed to be linear, and to change at all levels instantaneously when the bottom concentration changes. This means that the timescale for response of the profile (say h/w_s) should be either short or long compared with the time-scale of change in velocity (say 3 hours for a semi-diurnal tide).
5. The settling velocity is assumed to be constant and independent of concentration, so that power-law dependence on concentration, and hindered settling, are both excluded. The exclusion of hindered settling restricts the concentrations to less than about 5 kg/m3.
6. The method is only as good as the erosion and deposition laws on which it is based.

Although these assumptions seem rather restrictive, some of them apply also to many full numerical models.
Validation

Tests have not been made against measured concentrations. This would require field data in which the concentrations and the values of the various mud properties have all been measured, in a situation that approximates to the assumptions listed above. However, examples of concentrations for typical values of the mud properties have been calculated in a spreadsheet and are shown below. The peak shear-stress $\hat{\tau}$ is calculated from the peak tidal current speed U_{max} using the smooth-turbulent drag coefficient devised by Soulsby in Section 2.4.1, EP13. The thresholds of erosion and deposition are given a range of values relative to the maximum shear-stress, subject to $\tau_d < \tau_e < \hat{\tau}$.

The range of concentrations obtained looks plausible. Values of concentration > 5 kg/m3 are highlighted as being outside the limit of applicability because hindered settling is not included. The concentrations decrease strongly as τ_e increases, and decrease with increasing τ_d for a fixed τ_e. All concentrations are directly proportional to m_e. The variation in concentration through a tidal cycle $C_{\text{max}}/C_{\text{min}} = \exp(2A)$ varies from about 1.5 for the largest concentrations to about 40 for the smallest concentrations. The absolute values of concentration depend primarily on the erosion parameters m_e and τ_e, whereas the ratio of max to min depends on the deposition parameters w_s and τ_d.

Gaps in knowledge

This method could usefully be extended to use alternative assumptions, for example:

- assume a concentration-dependent settling velocity, possibly including hindered settling
- assume a profile shape based on eddy-diffusion considerations
- allow the profile shape to adapt with time
- replace the Krone law for deposition with the more plausible version proposed by Winterwerp (see Algorithm EP16)
- replace the sinusoidal variation in shear-stress with an asymmetrical variation (e.g. flood-dominant velocities)
- replace the sinusoidal variation with a full spring-neap cycle

The limits of mathematical tractability might be stretched by some of these extensions. It would nevertheless be desirable to obtain algebraic solutions that retain the insight that formulae give, rather than using an (albeit simple) numerical scheme.

References

Table showing spreadsheet output from the mud concentration algorithm

Concentrations at slack water C_0, maximum C_{max}, and minimum C_{min}

<table>
<thead>
<tr>
<th>depth h (m)</th>
<th>tidal period (hours)</th>
<th>ω (s$^{-1}$)</th>
<th>U_{max} (m/s)</th>
<th>τ_{max} (N/m2)</th>
<th>t_{max} (kg/N/m)</th>
<th>τ_{e}</th>
<th>C_{e} (kg/m3)</th>
<th>ϕ_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12.4</td>
<td>0.000141</td>
<td>0.83</td>
<td>0.656793</td>
<td>0.0001</td>
<td>0.0002</td>
<td>1.392925</td>
<td>0.100167</td>
</tr>
</tbody>
</table>

Table of C_0 kg/m3 Concentration at slack water

<table>
<thead>
<tr>
<th>$\tau_{\text{d}}/\tau_{\text{max}}$</th>
<th>C_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.908719 0.9</td>
<td>0.013</td>
</tr>
<tr>
<td>1.696639 0.8</td>
<td>0.045</td>
</tr>
<tr>
<td>1.484559 0.7</td>
<td>0.057</td>
</tr>
<tr>
<td>1.272479 0.6</td>
<td>0.133</td>
</tr>
<tr>
<td>0.9604 0.5</td>
<td>0.173</td>
</tr>
<tr>
<td>0.84832 0.4</td>
<td>0.230</td>
</tr>
<tr>
<td>0.63624 0.3</td>
<td>0.322</td>
</tr>
<tr>
<td>0.42416 0.2</td>
<td>0.502</td>
</tr>
<tr>
<td>0.21208 0.1</td>
<td>0.777</td>
</tr>
</tbody>
</table>

Table of C_{max} kg/m3 Max bottom concentration, occurs at end of erosion phase

<table>
<thead>
<tr>
<th>$\tau_{\text{d}}/\tau_{\text{max}}$</th>
<th>C_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.908719 0.9</td>
<td>0.085</td>
</tr>
<tr>
<td>1.696639 0.8</td>
<td>0.246</td>
</tr>
<tr>
<td>1.484559 0.7</td>
<td>0.462</td>
</tr>
<tr>
<td>1.272479 0.6</td>
<td>0.736</td>
</tr>
<tr>
<td>1.0604 0.5</td>
<td>0.771</td>
</tr>
<tr>
<td>0.84832 0.4</td>
<td>1.545</td>
</tr>
<tr>
<td>0.63624 0.3</td>
<td>2.222</td>
</tr>
<tr>
<td>0.42416 0.2</td>
<td>3.439</td>
</tr>
<tr>
<td>0.21208 0.1</td>
<td>6.833</td>
</tr>
</tbody>
</table>

Table of C_{min} kg/m3 Min bottom concentration, occurs at end of deposition phase

<table>
<thead>
<tr>
<th>$\tau_{\text{d}}/\tau_{\text{max}}$</th>
<th>C_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.908719 0.9</td>
<td>0.002</td>
</tr>
<tr>
<td>1.696639 0.8</td>
<td>0.008</td>
</tr>
<tr>
<td>1.484559 0.7</td>
<td>0.024</td>
</tr>
<tr>
<td>1.272479 0.6</td>
<td>0.058</td>
</tr>
<tr>
<td>1.0604 0.5</td>
<td>0.130</td>
</tr>
<tr>
<td>0.84832 0.4</td>
<td>0.283</td>
</tr>
<tr>
<td>0.63624 0.3</td>
<td>0.622</td>
</tr>
<tr>
<td>0.42416 0.2</td>
<td>1.472</td>
</tr>
<tr>
<td>0.21208 0.1</td>
<td>4.471</td>
</tr>
</tbody>
</table>

R&D OUTPUTS: ESTUARY PROCESS RESEARCH PROJECT (ESTPROC) TR3_RELEASE 5.0
2.7.2 EP18 - Algorithm for mass settling flux of flocculated cohesive sediment (Plymouth – Manning)

Aim To calculate the mass settling flux of flocculated cohesive sediment in a turbulent estuarine water column.

Scientific background
For predicting the transport and fate of sediment movement in estuaries, the determination of the various spatial and temporal mass fluxes is essential. One area which has caused numerous problems, is the modelling and parameterised description of the vertical mass settling flux of fine cohesive sediment, which becomes the depositional flux close to slack water. This flux is the product of the suspended particulate matter (SPM) concentration and the settling velocity. For non-cohesive sediment this is a relatively simple process as the settling velocity is proportional to the particle size. Whereas estuarine muds, which are composed of combinations of clay minerals and different types of biological matter, have the potential to flocculate into larger, low density aggregates called flocs.

Turbulent shear generated in estuarine water columns is recognised as having a controlling influence on both the formation of mud flocs, and their break-up (Manning, 2004a). However, to date there have been no in-situ studies which have quantified the flocculation process with the specific emphasis of taking floc effective density, and consequently particulate mass distribution variations, into account, within both continually changing estuarine suspended concentration gradients and varying intensities of turbulent mixing. This is mainly due to the fragility of the fastest settling macroflocs, which are easily broken-up upon sampling.

The new flocculation model, developed as part of the EstProc project, is based entirely on empirical observations made using low intrusive floc and turbulence data acquisition techniques, from a wide range of estuarine water column conditions. In particular, the floc population size and settling velocity spectra were sampled using the unique video-based INSSEV: IN-Situ SEttling Velocity instrument, which was developed at the University of Plymouth. This provided a total of 157 floc data sets, from experiments conducted within the framework of three recent European Commission funded projects: COSINUS, SWAMIEE and INTRMUD (see Manning, 2004b).

The algorithms were generated by a parametric multiple regression statistical analysis of key parameters which were generated from the raw spectral data (detailed derivations and testing of the algorithms are described in: Manning, 2004c; Manning and Dyer, 2004). The multi-regression identified the key components which best quantitatively describe a floc population as being:

- the changes in the macrofloc (flocs size > 160 µm) and microfloc (flocs size < 160 µm) settling velocities ($W_{macroEM}$ and $W_{microEM}$), together with how the suspended matter is distributed across each floc sub-population ($SPM_{ratioEM}$).

Improvement in understanding
The new method improves on existing methods because:

R&D OUTPUTS: ESTUARY PROCESS RESEARCH PROJECT (ESTPROC) TR3_RELEASE 5.0
The algorithm is based on a multiple regression analysis of 157 uniquely comprehensive empirical flocculation and turbulence data sets, which were acquired from three different estuarine field experiments and two laboratory studies.

The algorithm can estimate the settling velocity of both the macrofloc and microfloc sub-populations, in response to changes in turbulence and SPM concentration at an individual temporal and spatial point in an estuarine water column simulation. This method can also apportion the concentration distribution between the macrofloc and microfloc fractions, and correlate this floc mass to the respective settling velocities of each fraction.

Typically these algorithms only require the input of two variables (turbulent shear stress and SPM concentration), which simplifies their inclusion in numerical simulation sediment transport models, and reduces computer processing time.

The flocculation algorithm has extreme flexibility in adapting to a wide range of estuarine environmental conditions, specifically for applied modelling purposes, by producing reliable mass settling flux predictions in both quiescent waters, and on the rare occurrence of very turbulent events experienced during extremely high flow velocity conditions, where near-bed shear stresses could potentially reach the order of 1-10 N m$^{-2}$. The derived mass flux values are also valid for both water columns of very low turbidity and highly saturated benthic suspension layers with concentration approaching 8.6 g l$^{-1}$.

It has been tested against independently acquired in-situ data sets, and gives good agreement.

Implementation
The algorithm is written in a step-by-step “recipe” style, which can easily be coded for numerical computer applications. The complete algorithm will calculate mass settling flux, or the three main components (equations A1, A2 and A4) can be used in a stand-alone mode if required.

Algorithm

Inputs
The algorithm can be implemented in 1D, 2D and 3D models providing data inputs of the following parameters:

- Turbulent shear stress (N m$^{-2}$) \(\tau \)
- Suspended particulate matter concentration (mg l$^{-1}$) \(\text{SPM} \)
- Root mean square of the gradient in turbulent velocity fluctuations (s$^{-1}$) \(G \)
- Von Karman constant (no units) \(\kappa \)
- Kinematic viscosity (m2 s$^{-1}$) \(\nu \)
- Water density (kg m$^{-3}$) \(\rho_w \)
- Distance above the estuary bed (m) \(z \)

Outputs
In the most complex application, 3D, the algorithm can calculate the following outputs for each point (node) on a predetermined three-dimensional numerical model grid:

- Macrofloc settling velocity (mm s$^{-1}$) \(W_{s_{\text{macroEM}}} \)
- Microfloc settling velocity (mm s$^{-1}$) \(W_{s_{\text{microEM}}} \)
Suspended particulate matter ratio (no units) \(\text{SPM}_{\text{ratioEM}} \)
Total mass settling flux (mg.m\(^{-2}\) s\(^{-1}\)) \(\text{MSF}_{\text{EM}} \)

Calculate macrofloc settling velocity
For \(\tau \) ranging between 0.04-0.7 N m\(^{-2}\):

\[
W_{\text{macroEM}} = 0.644 + 0.000471 \text{ SPM} + 9.36 \tau - 13.1 \tau^2 \quad (A1a)
\]
For \(\tau \) ranging between 0.6-1.5 N m\(^{-2}\):

\[
W_{\text{macroEM}} = 3.96 + 0.000346 \text{ SPM} - 4.38 \tau + 1.33 \tau^2 \quad (A1b)
\]
For \(\tau \) ranging between 1.4-5 N m\(^{-2}\):

\[
W_{\text{macroEM}} = 1.18 + 0.000302 \text{ SPM} - 0.491 \tau + 0.057 \tau^2 \quad (A1c)
\]

- Continuity between each relationship can be achieved by calculating a \(W_{\text{macroEM}} \) value using both adjacent equations (at a specific \(\tau \)) and obtaining a single transitional \(W_{\text{macroEM}} \) value from linear interpolation.
- The transition shear stress zone between eqns \(A1a-A1b \) is 0.6-0.7 N m\(^{-2}\).
- The transition shear stress zone between eqns \(A1b-A1c \) is 1.4-1.5 N m\(^{-2}\).

Calculate the microfloc settling velocity
For \(\tau \) ranging between 0.04-0.55 N m\(^{-2}\):

\[
W_{\text{microEM}} = 0.244 + 3.25 \tau - 3.71 \tau^2 \quad (A2a)
\]
For \(\tau \) ranging between 0.51-10 N m\(^{-2}\):

\[
W_{\text{microEM}} = 0.65 \tau^{-0.541} \quad (A2b)
\]

- Continuity between each relationship can be achieved by calculating a \(W_{\text{microEM}} \) value using both adjacent equations (at a specific \(\tau \)) and obtaining a single transitional \(W_{\text{microEM}} \) value from linear interpolation.
- The transition shear stress zone occurs between a \(\tau \) of 0.51-0.55 N m\(^{-2}\).

Calculate an alternative turbulence parameter format (optional)
If both equations \(A1 \) and \(A2 \) are to be incorporated into the framework of a numerical model where the turbulence input parameter is of the turbulent shear G format, all the \(\tau \) functions must be replaced with the following \(\tau_{\text{mod}} \) equation:

\[
\tau_{\text{mod}} = \rho_w \left[(G^2 \cdot \kappa \cdot \nu \cdot z)^{1/3} \right]^{2} \quad (A3)
\]

This is because unlike the \(\tau \) parameter, corresponding values of \(G \) are dependent on their height in the water column relative to the estuary bed.

Calculate the suspended particulate matter ratio
\(\text{SPM}_{\text{ratioEM}} = 0.815 + 0.00318 \text{ SPM} - 0.00000014 \text{ SPM}^2 \quad (A4) \)
Calculate the total mass settling flux

\[
\text{MSF}_{EM} = \left[\frac{1}{1 + \text{SPM}_{\text{ratioEM}}} \cdot (\text{SPMWS}_{\text{macroEM}}) \right] + \left[\frac{1}{1 + \text{SPM}_{\text{ratioEM}}} \cdot (\text{SPMWS}_{\text{microEM}}) \right]
\] (A5)

Limits of applicability
The algorithm is applicable where there is high resolution coverage of SPM concentration and turbulent shear stress; either as an empirical data set or values generated by a numerical model.

No multiple regression data points were available for SPM concentrations over 1 g l\(^{-1}\) when the turbulent shear stress fell below 0.1 N m\(^{-2}\), and therefore this should be regarded as a further boundary limit to equation A1a.

The lower limit of SPM concentration to which the approach is applicable is considered to be 10 to 20 mg l\(^{-1}\).

What has been found is that the SPM ratio related to concentration. The key parameters were evaluated from the large dataset using statistical methods and the best components were identified. The combined parameter of turbulence and sediment concentration did not improve the situation for prediction of microfloc settling. It was found that the microflocs were more influenced by turbulence as they are the building blocks for macroflocs, which have a dependence on turbulence AND concentration. The macroflocs comprised aggregates of microflocs. The SPM ratio mass concentration distribution was found to be related just to sediment concentration. The correlation was not perfect statistically but the trend was indicative of the situation especially when flocculation is at a peak and settling flux increases. Older formulations related floc settling velocity just to concentration but now we find that is not sufficient to provide a good relationship.

Validation
The algorithms were tested against data acquired from a series of field experiments funded by the Natural Environmental Research Council which were conducted in the upper reaches of the Tamar estuary (UK), and placed the measurements within the tidal trajectory of the turbidity maximum. For spring tide measurements made on the 15\(^{th}\) April 2003, a concentrated benthic suspension layer formed in close proximity to the bed on the ebb producing a peak concentration of 4.2 g l\(^{-1}\). Turbulent shear stresses for the tidal cycle ranged from 0.04-1.6 N m\(^{-2}\). The algorithms calculated the cumulative total mass settling flux for the entire 12.5 hour tidal cycle to within 93% of the measured flux.

The algorithms have been tested within an HR Wallingford TELEMAC-3D numerical model of a cross-section of the Thames estuary, and a 2D and 3D mudflat cross-section process model (see example applications in EstProc final report TR2 or HR Wallingford reports by Baugh and by Spearman).
References

2.7.3 EP19 - Algorithm for Generic Models – 1-D single point, 2-D cross-sectional (POL – Lane)

Aim As part of Phase 1 of the UK Estuarine Research Programme, the EMPHASYS project highlighted the capabilities and limitations of ‘bottom-up’ (dynamical, numerical) and ‘top-down’ (geo-morphological, rule-based) models. A recommended subsequent objective was the integration of these approaches into ‘hybrid’ models – this has been pursued in Defra research project FD2107. ‘Generic Models’, of the form described here, offer a further alternative. These models provide exploratory tools that can be used to:

i) link theory with observations
ii) investigate scaling issues over wide ranges of parameter space
iii) derive appropriate up-scaling of process-study results for incorporation as ‘rules’ in T-D models or algorithms in B-U models.

Thus, within the aims of the ERP, these models can provide:

i) identification of potential for morphological mode changes
ii) specification of range of operation for B-U models in assembling ensemble outcomes
iii) identification and assessment of algorithms and ‘rules’.

Formulation
The following description is extracted from the 1-D model software package. The 2-D version is essentially similar.

Model Description
Random walk particle movements are used to replicate solutions to the 1-D advection-diffusion equation:

\[
\frac{\partial C}{\partial t} - w_s \frac{\partial C}{\partial z} = \frac{\partial}{\partial z} \left(K_z \frac{\partial C}{\partial z} \right) + \text{source}
\]

where \(C \) is the suspended sediment concentration, \(w_s \) is the fall velocity, and \(K_z \) is the vertical eddy diffusivity coefficient.

Erosion
A simple erosion source \(\alpha U^p \) is assumed, with coefficient alpha, where \(p \) is the power to which the tidal velocity \(U = \bar{U} \cos \omega t \) is raised, and \(\omega \) is the \(M_2 \) tidal frequency. The potential erosion in each time step \(dt \) is summed until it exceeds a prescribed mass, \(M \) of an individual particle. The height of release of each particle corresponds to a normal distribution where the standard deviation \(\sigma = l \) (diffusive path length - see diffusion, below).

Settlement
Deposition occurs when the height of the particle above the bed calculated from the advective step is less than zero.
Diffusion

Particles are displaced upwards or downwards randomly by a length \(l = \sqrt{2 K_z \Delta t} \) (Fischer et al., 1979). \(K_z \) is approximated by \(f \tilde{U} D \) where \(f \) is a bed friction coefficient and \(D \) is the water depth. Movements ‘above’ the surface are reflected downwards. Movements ‘below’ the bed are reflected upwards but reduced by a ‘bounce’ coefficient \(b \).

Numerical solution

The model simulation extends over \(N \) time steps for \(NC \) tidal cycles, starting with no particles in suspension. \(N \) is chosen so that \(\Delta t = P/N \), where \(P \) is the tidal period. This produces a random walk length \(l \) (see section on diffusion) less than 0.1\(D \). The solution involves calculation, for successive time steps, of the height above the bed, \(z \) of each particle following:

1. an advective movement \(-w_s \Delta t\) then by
2. a diffusive displacement. Additional new particles are released into suspension by accumulation of the erosion potential. Likewise particles may be ‘lost’ by settlement following the advective movement.

Using the model

This model is written in FORTRAN77 and a PC-compatible executable program was developed. Changes to variables are made in the file ‘polspm1.dat’. The user is free to modify the source code (in which case a suitable compiler is required). Model results are currently written to the file ‘polspm1.out’. If you are interested in the code contact Proudman Oceanographic Laboratory: Andrew Lane, email: ale@pol.ac.uk

Application

The 1-D model is deliberately designed for maximum simplification. Simulations can involve variations in: \(\tilde{U}, D, f, b, \alpha \), and \(P, NC, w_s \). The 2D model has been implemented to solve for morphological updating. Figures 1 and 2 show examples of respective applications of these models.

![Figure 1](image)

Figure 1 Suspended Particulate concentrations over a spring-neap cycle. (depth 20 m, tidal current amplitude 0.5 m s\(^{-1}\), \(w_s \) 10\(^{-4}\) m s\(^{-1}\)). The axes are time and non-dimensional height in the water column.
Figure 2 Morphological evolution over 2.5 (dotted line), 5 (dashed line) and 10 (solid line) years for (initial) linear triangular section; from 2D ‘y-z’ version of model; y axis is height in m and x axis is transverse distance in km from channel centre line
(depth 10 m, tidal amplitude 3 m, \(w_s = 0.001\) m s\(^{-1}\) with and without flood defence)

Future developments

Many variations and extensions of these models are possible (see http://www.gotm.net/ for a European network development, extending to ecological applications). With a focus on the UK ERP, envisaged developments include:

i) more complex representation of eddy diffusivity \(K_z\),
ii) mixed sediments (ranges of settling velocities \(w_s\))
iii) flocculation
iv) biological and chemical mediation
v) consolidation
vi) surface wave impact (already tested in 3-D versions)

Incorporation of the above in spring-neap simulations of the 2-D model will provide valuable insight into the sensitivities of estuarine morphologies. This model should be especially valuable in examining the sensitivity of inter-tidal areas (including saltmarsh) to interventions such as flood protection or ‘set-back’ and to the broader impacts of Global Climate change.

Reference

2.8 Understanding of general sedimentary processes

2.8.1 EP20 - Algorithm for modelling sediment mixing in estuaries (WLD – Winterwerp)

Aim To calculate the initial mixing between fluid mud layer and overflowing water

Scientific background See section 2.8.1.1 to this algorithm

Improvement in understanding This algorithm improves on existing formulae because:

- It is derived from a thorough elaboration of the turbulent kinetic energy equation,
- It distinguishes between a turbulent fluid mud layer and a turbulent overlying water layer,
- It has been tested against laboratory data.

Implementation The new algorithm has been implemented in a MATLAB environment (e.g. section 2.8.1.1) and in the operational DELFT3D software system.

Algorithm

Inputs
- water depth (m) \(h \)
- depth-averaged flow velocities (m/s) \(u, v \)
- water density (kg/m\(^3\)) \(\rho_0 \)
- water viscosity (m\(^2\)/s) \(\nu \)
- shear velocity (m/s) \(u^* \)
- fluid mud thickness (m) \(\delta \)
- depth-averaged fluid mud velocities (m/s) \(u_m, v_m \)
- fluid mud density (kg/m\(^3\)) \(\rho_b \)
- fluid mud viscosity (m\(^2\)/s) \(\nu_m \)
- fluid mud yield strength (Pa) \(\tau_B \)
- coefficient (-) \(c_t \) \((c_t = 0.25)\)
- coefficient (-) \(c_q \) \((c_q = 5.6)\)
- coefficient (-) \(c_\sigma \) \((c_\sigma = 0.42)\)

Outputs
- initial entrainment velocity (m/s) \(w_e \)

Calculate mean velocity

\[
\text{mean velocity overlying layer } \quad U = \sqrt{u^2 + v^2} \quad (1)
\]

\[
\text{mean velocity fluid mud layer } \quad U_m = \sqrt{u_m^2 + v_m^2} \quad (2)
\]
Calculate turbulence level and determine mode of entrainment

Reynolds number overlying layer

\[\text{Re} = \frac{U h}{v} \]

(3)

effective Reynolds number fluid mud layer

\[\text{Re}_m = \frac{4U_m \delta}{\nu_m}, \quad \text{Re}_e = \frac{8\rho_b U_m^2}{\tau_B} \]

(4)

\[
\frac{1}{\text{Re}_e} = \frac{1}{\text{Re}_m} + \frac{1}{\text{Re}_\tau}
\]

if Re_e > 3,000 then Case II

if Re_e < 3,000 and Re > 2,000, then Case I

if Re_e < 3,000 and Re < 2,000, then \(w_e = 0 \).

Case I entrainment (upper layer turbulent)

Input: \(u_* = \) shear stress at water surface

bulk Richardson number

\[\text{Ri}_s = \frac{(\rho_b - \rho_w) g h}{\rho_u u_*^2} \]

(5)

if Ri_s < 1,000 then

\[w_e = u_* \left(\frac{2c_s}{c_q + \text{Ri}_s} \right)^{1/2} \]

(6)

if Ri_s > 1,000 then

\[w_e = u_* \frac{c_s}{\text{Ri}_s} \]

(7)

Output: \(w_e = d\delta/dt = \) initial entrainment velocity of fluid mud layer (layer becomes thinner). Note that at larger Richardson numbers (strong stratification) the entrainment process virtually ceases (strong damping of turbulence) and only “stirring”, described by equ. (7) remains.

Case II entrainment (lower layer turbulent)

Input: \(u_* = \) shear stress at consolidated bed

bulk Richardson number

\[\text{Ri}_s = \frac{(\rho_b - \rho_w) g \delta}{\rho_b u_*^2} \]

(8)

if Ri_s < 1,000 then

\[w_e = u_* \left(\frac{2c_s}{c_q + \text{Ri}_s} \right)^{1/2} \]

(9)

if Ri_s > 1,000 then

\[w_e = u_* \frac{c_s}{\text{Ri}_s} \]

(10)
Output: \(w_c = \frac{d\delta}{dt} = \text{initial entrainment velocity of fluid mud layer (layer becomes thicker).} \) Note that at larger Richardson numbers (strong stratification) the entrainment process virtually ceases (strong damping of turbulence) and only “stirring”, described by equ. (10) remains.

Limitation of application
This algorithm is applicable when either the water layer or the fluid mud layer is turbulent, or if the turbulence level of either one of these layers is much larger than the other. In case both layers are more or less equally turbulent, vertical mixing, possibly affected by buoyancy effects, becomes the dominant mechanism.

This algorithm describes the initial entrainment rates.

- Case I formula may also be applied as a first approximation to model erosion of the entire fluid mud layer.
- Case II formula can be applied as long as the fluid mud layer remains thin with respect to the water depth: \(\delta/h < 0.2 \).

Validation
The model is validated against laboratory data – see below.

2.8.1.1 Entrainment of fluid mud layers

Entrainment is a process that occurs in systems with two layers of fluid, and is referred to when a turbulent layer erodes a second non-turbulent (or less turbulent) layer, e.g. Turner (1973). Scarlatos and Mehta (1990), Mehta and Srinivas (1993) and Winterwerp and Kranenburg (1997a) showed that soft mud layers may behave as a viscous fluid, in which case they may be subject to entrainment processes.

Kranenburg and Winterwerp (1997) derived equations for entrainment at two conditions (see also Bruens, 2003):

- **Case I:** Entrainment of a fluid mud layer by the turbulent water layer above,
- **Case II:** Entrainment by a turbulent fluid mud layer of the water layer above.

This is further depicted in Figure 1, which also contains the various definitions used in the derivation of the entrainment equation. For Case I, the upper turbulent layer erodes the lower mud layer, and the sediment-water interface lowers: the sediment concentration in the lower mud layer remains constant, and the concentration in the upper layer slowly increases. Case I conditions occur for instance when wind-induced surface shear stresses generate entrainment, in the case of the entrainment of patches of fluid mud in local depressions (navigation channels) by turbulent ambient water, and in many laboratory experiments.

For Case II, the lower turbulent mud layer entrains water (or low-concentration suspension) from the upper layer, and the sediment-water interface rises: the sediment concentration in the lower layer decreases, and it remains constant in the upper layer. Case II conditions occur for instance in the case flowing mud layers, either in a river channel (Loire, e.g. Le Hir, 1997) or on slopes, and in the case of sub-marine turbidity currents.
Figure 1 Case I (upper panel: upper layer turbulent) and Case II (lower panel: lower layer turbulent) entrainment

The entrainment equation is obtained by integrating the 1DV momentum equation, sediment balance equation and turbulent kinetic energy equation (TKE) over the thickness of the turbulent layer h (upper layer water depth, Case I) or δ (lower layer mud thickness, Case II), using the equation of state. We have added the effects of side-wall friction to enable the analysis of laboratory flume experiments, and the effects of a yield strength τ_y of the mud layer is introduced by relating the various shear velocities to a “yield velocity” $u_y^2 = \tau_y/\rho_b$. Integration of the TKE-equation yields:

$$\frac{d}{dt} \int_0^h k dz + \int_0^h \left(u w \frac{d}{dz} \right) dz - \frac{2A}{W} c U^3 - \alpha \frac{S}{\rho_b} \int_0^h w' c' dz + \int_0^h c' dz = 0 \tag{1}$$

in which u and w are the horizontal and vertical flow velocity, c is the suspended sediment concentration, a prime denotes turbulent fluctuations and an overbar averaging over the turbulent time scale. The entrainment equation for Case I becomes:

$$c_q \frac{d}{dt} \left(h \frac{dh}{dt} \right) - c_s \left[2 \left(u_h^2 - u_y^2 \right)(U - U_n) + \left((U - U_n) - c_s u_y^2 \right) \frac{dh}{dt} \right] +$$

$$+ c_s' \left(u_h^2 - u_y^2 \right)(U - U_n) - c_q \left(u_h^2 - u_y^2 \right) u_s +$$

$$- 2c_w \frac{h}{W} \left(u_h^2 - u_y^2 \right) U + B \frac{dh}{dt} + 2 \frac{\alpha C}{\rho_b} g w_s h = 0 \tag{2}$$

for $\frac{dh}{dt} > 0$
in which U is depth-mean velocity of turbulent layer, w_s is the sediment settling velocity, α is the fractional density difference ($\alpha = (\rho_s - \rho_w)/\rho_s$), W is width of flume (laboratory experiments), B is the total buoyancy, i.e. $B = a g h (c_h - C)/\rho_0$, and the terms between angular brackets become zero when negative. The various coefficients were established as: $c_q = 5.6$; $c_i = c'_i = 0.25$; $c_\sigma = 0.42$; $c_w = 0.07$. The term u^3 is the so-called stirring term, which becomes important when viscous effects play a role (i.e. large R_i*): $u^3 = u_i^3 + u_s^3 + 2u_iu_s/W$, with $u_i^3 = \lambda U^2$; λ is friction coefficient. U_h is the velocity of the upper layer at the water – fluid mud interface and u_h is the velocity of the lower layer at the water – fluid mud interface.

In the case of no viscous effects ($u_h = U_h = 0$), thus no stirring ($u_s = 0$), as in the case of small Richardson numbers, the equilibrium solution (i.e. at large time when $U \, dH/dt \approx u^2$) to (2) yields an explicit expression for the initial entrainment velocity w_e, hence entrainment rate $E*$ (e.g. Kranenburg and Winterwerp, 1997):

$$E_\ast = \frac{1}{u_\ast} \frac{dh}{dt} = \frac{w_\ast}{u_\ast} = \left(\frac{2c_i}{c_q + R_i} \right)^{1/2}$$

(3)

where we have defined $R_i = B/u^2 = (\rho_h - \rho_0)gh_h/\rho_0 u^2$, which is the bulk Richardson number. Note that shear is generated at the water surface (Case I).

This entrainment equation differs both in their coefficients and exponent from the one used by Odd and Cooper (1989) to describe the large scale behaviour of (fluid) mud in the Severn estuary.

At large R_i* viscous effects, hence the stirring term u_s becomes important, and (2) becomes:

$$E_\ast = \frac{1}{u_\ast} \frac{dh}{dt} = \frac{w_\ast}{u_\ast} = c_\sigma \frac{u^3}{u_\ast} = c_\sigma \frac{B}{R_i}$$

(4)

where u_\ast is measured at the water-mud interface.

In flumes with side-wall friction, the equilibrium solution to (2) at large Richardson numbers reads (using the equilibrium solution to the momentum equation as well, e.g. Winterwerp and Kranenburg, 1997b):

$$\frac{1}{u_\ast} \frac{dh}{dt} = \frac{w_\ast}{u_\ast} = \frac{c_w}{(2\lambda h/W)(c_q + R_i^\ast)}$$

(5)

Note that the effects of large R_i* and side-wall friction explain the apparent inconsistencies in literature between $w_e \propto R_i*$ or $w_e \propto \sqrt{R_i}$.

For Case II we give the results without derivation as this is straightforward:
Entrainment equation (6) yields the same asymptotic solutions as (2), i.e. equ.’s (3) and (5), but \(h \) replaced by \(\delta \), and \(u^* \) is now related to the bed shear stress (equ. (4) remains unaltered).

The entrainment model for Case I (equ. 2) was used to re-analyse the entrainment experiments on stable fresh-saline water two-layer systems by Kantha et al. (1977), as presented in Figure 2. It is shown that (2) predicts the observations properly, including the change in \(E^* \) vs \(Ri^* \) slope. This change in character with increasing \(Ri^* \) is fully explained by the effects of viscosity and side-wall friction. Details of this analysis are given in Winterwerp and Kranenburg (1997b).

\[
c_s \frac{d}{dt} \left(\delta U_m \frac{d\delta}{dt} \right) - c_s \left[2 \left(u_{in}^2 - u_{is}^2 \right) (U_n - U_m) + \left((U_h - U_m)^2 - c_s \delta u_s^2 \right) \frac{d\delta}{dt} \right] + \\
+ c_s' \left(u_{in}^2 - u_{is}^2 \right) (U_n - U_m) - c_{\sigma s} \left(u_{in}^2 - u_{is}^2 \right) u_s + \\
-2c_s \frac{\delta}{W} \left(u_{in}^2 - u_{is}^2 \right) U_m + \frac{d\delta}{dt} + 2 \frac{\alpha C}{\rho_0} g w_s \delta = 0 \quad \text{for } \frac{d\delta}{dt} > 0
\]

Figure 2 Initial measured and predicted (equ. 2) entrainment rates as function of bulk Richardson (after Winterwerp and Kranenburg, 1997b and Bruens, 2003)

We have also plotted the initial entrainment rates for Case I entrainment measured by Winterwerp and Kranenburg (1997b) and for Case II entrainment measured by Bruens (2003). These measurements were carried out in a rotating annular flume with kaolinite and mud from the Caland Canal (entrance channel to Rotterdam Port). It is shown that these entrainment rates agree quite well, in spite of their difference in nature, and follow the \(w_e \propto Ri^* \) law, indicating that viscous effects and side-wall friction were important in these experiments.
Winterwerp and Kranenburg (1997a) and Bruens (2003) showed that the entrainment behaviour of fluid mud-water systems and salt-fresh water systems behave identically. This implies that fluid mud layers behave as viscous fluids, at least during part of their existence. This was also observed by Scarlatos and Mehta (1990) and Mehta and Srinivas (1993).

The effects of yield stress on the entrainment behaviour are illustrated in Figure 3, showing the decay in entrainment rate with time; OSLIM is optical silt monitoring instrument. The experiment against which the entrainment model was compared, was also carried out in a rotating annular flume with mud from the Caland Canal. Results of other, similar experiments are given in Winterwerp and Kranenburg (1997b), including the results of a “tidal” experiment, during which the applied shear stress was varied sinusoidally with time.

![Figure 3](image.png)

Figure 3 Time-variation of suspended sediment concentration above fluid mud layer as a result of entrainment of that layer (after Winterwerp and Kranenburg, 1997b)

This entrainment model has been applied for instance in a numerical modelling study on the far field dispersion of fine grained sediments mobilised by Water Injection in the River Crouch, UK (Winterwerp et al., 2002). The results of the simulations compared favourably with measurements on the dispersion of labelled sediment.

References

Bruens, A.W., 2003, Entraining mud suspensions, PhD-thesis, Delft University of Technology, also Communications on Hydraulic and Geotechnical Engineering, Faculty of Civil Engineering, Delft University of Technology, Report 03-01, ISSN 0169-6548.

2.8.2 EP21 - Algorithm for Gravitational circulation (WLD – Winterwerp)

Aim To describe and implement a method for including gravitational circulation in depth-averaged computational hydrodynamic models.

Background
Fresh water outflow in estuaries and lagoons generates horizontal density gradients resulting in a vertical circulation with a net landward near-bed current (gravitational circulation). As the near-bed sediment concentration tends to be larger than the concentration higher in the water column, gravitational circulation causes a net landwards sediment transport.

Gravitational circulation is often related to the formation and location of the turbidity maximum in estuaries, as sediment transport converges near the head of the salinity intrusion.

When the salinity structure is stratified, the landward transport will increase. This mechanism plays a role mainly in (deeper) channels of estuaries and tidal inlets, and is stronger for fine sediment with a larger grain size, as this sediment depicts a more pronounced vertical concentration gradient.

![Figure 1 Absolute difference between computed 2Dh suspended sediment concentration in Dollart estuary with and without parameterisation of gravitational circulation](image)

Figure 1 Absolute difference between computed 2Dh suspended sediment concentration in Dollart estuary with and without parameterisation of gravitational circulation
Method
The effects of gravitational circulation is not accounted for in depth-averaged (2Dh) sediment transport models, as all information on the vertical structure of the flow is lost. However, these effects can be included through parameterisation, using the horizontal (depth-averaged) salinity field, calibrated against observations by tuning the horizontal dispersion coefficient for salt D_S. The basic idea is to modify the advection term of the momentum equation for fine sediment with the computed salinity field, as gravitational circulation is an advective process. The transport of salt water T_s is described with an advective and diffusive part:

$$T_s = h\bar{U}S - hD_s \frac{\partial S}{\partial x}$$ \hspace{1cm} (1)

where h is water depth, U is flow velocity vector, S is salinity and D_s is the dispersion coefficient for salt water transport, which is the calibration parameter to obtain a proper salinity distribution, given a properly calibrated water movement. The transport of fine sediment T_c, where c is the suspended sediment concentration, then consists of an advective part, normalised by the depth-mean salinity, given by T_s and a diffusive part:

$$T_c = T_s \frac{c}{S} - hD_c \frac{\partial c}{\partial x} = h\bar{c} \left(\bar{U} - \alpha D_s \frac{\partial S}{\partial x} \right) - hD_c \frac{\partial c}{\partial x}$$ \hspace{1cm} (2)

where we have added the coefficient α to accommodate for possible non-linear effects. Note that in general $D_s >> D_c$, where D_c is the dispersion coefficient for suspended sediment.

Figure 1 shows the effect of this parameterisation on the computed depth-averaged suspended sediment concentration in the Dollart estuary, The Netherlands.
2.8.3 EP22 – Algorithm for transport by sediment-induced density currents
(WLD – Winterwerp)

Aim To describe and implement a method for including sediment-induced density currents in a 3-dimensional computational hydrodynamic model.

Background
Suspensions of fine-grained sediment behave as a single phase fluid with densities in excess of those of clear water. Buoyancy effects may therefore become important, and it was shown (Winterwerp, 2001) that this may occur already at moderate concentrations, depending on the (local) hydrodynamic conditions. When the sediment concentrations become too large, the turbulence field may collapse and the flow can no longer keep the sediment in suspension. This condition is referred to as saturation. At, or just prior to saturation, the flow carries the maximum possible amount of sediment, known as the flow’s capacity condition.

It is illustrative to compare the behaviour of a suspension in equilibrium at capacity condition of cohesive and non-cohesive sediment in uniform open channel flow in response to a (small) decrease in velocity:

- **At capacity conditions**, the vertical concentration profile of suspended non-cohesive sediment (sand) is at equilibrium with the local hydrodynamics. When the flow velocity is decreased, part of the sediment will settle until the sediment load is again in equilibrium with the new hydrodynamic conditions. Upon sedimentation, the settling particles form a rigid bed immediately, at which turbulence production is possible.

- **Under the same conditions**, settling flocs of cohesive sediment do not form a rigid bed but a layer of fluid mud instead, because of the high water content (large volumetric concentration) of the flocs. At the interface of the fluid mud layer relatively large gradients in suspended sediment concentration, hence fluid density occur, as a result of which turbulence mixing is damped. Because of this damping, less sediment can be kept in suspension, and a snowball effect results upon which finally no sediment at all can be kept in suspension.

It is noted that in natural environments additional sources of turbulence exist, generated locally or advected from elsewhere; such sources comprise bed irregularities, river banks, secondary currents, etc. Therefore, complete saturation may not be observed, even if the (local) conditions would be favourable.

Method
Prior to or without saturation, sediment-induced density effects can significantly influence large scale sediment transport rates. This is substantiated with simulations of the sediment transport into the Maasmond area, i.e. the approach channel to the Port of Rotterdam. These simulations have been carried out with a three-dimensional numerical model, based on DELFT3D, in which the following four processes have been implemented:

1. adjustment of the equation of state to account for the effects of suspended sediment concentration on the fluid density:
\[\rho(S, T, c^{(i)}) = \rho_s(S, T) + \sum_i \left(1 - \frac{\rho_u(S, T)}{\rho_s^{(i)}} \right) c^{(i)} \]

(1)

2. A buoyancy destruction term in the k-\(\varepsilon\) turbulence closure equation to account for sediment-induced turbulence damping:

\[
\frac{\partial k}{\partial t} + \frac{\partial u_i k}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\nu + \frac{\nu}{\sigma_k} \right) \frac{\partial k}{\partial x_i} = v_T \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j} + \delta_{ij} \frac{\nu}{\rho} \frac{\partial \rho}{\partial x_i} - \varepsilon \tag{2a}
\]

\[
\frac{\partial \varepsilon}{\partial t} + \frac{\partial u_i \varepsilon}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\nu + \frac{\nu}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_i} = c_{\varepsilon} v_T \frac{\varepsilon}{k} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j} + \delta_{ij} (1 - c_{\varepsilon}) \frac{\varepsilon}{k} \frac{\nu}{\rho} \frac{\partial \rho}{\partial x_i} - c_{2\varepsilon} \frac{\varepsilon^2}{k} \tag{2b}
\]

3. A hindered settling formula to account for the formation of steep vertical density gradients:

\[W_s = W_{s,0} \left(1 - \frac{c}{c_{gel}} \right)^5 \quad \text{or} \quad W_s = W_{s,0} \frac{(1-c/c_{gel})(1-c/\rho_s)}{1+2.5c/c_{gel}} \tag{3} \]

4. And a baroclinic pressure term in the momentum equations to account for horizontal pressure gradients as a result of horizontal concentration gradients:

\[
\frac{Du_i}{Dt} = -\frac{1}{\rho_0} \frac{\partial}{\partial x_i} \int g \rho dz' + \frac{1}{\rho_0} \frac{\partial \sigma_{ij}}{\partial x_j} - e_{ij} f u_j \\
\frac{\partial p}{\partial x_j} = -g \rho
\]

(4)

where \(x_i \) = spatial co-ordinate, \(t \) = time, \(g \) = gravitational acceleration, \(u_i \) = flow velocity, \(p \) = pressure, \(\sigma_{ij} \) = stress tensor, \(S \) = salinity, \(T \) = temperature, \(c \) = suspended sediment concentration, \(c_{gel} \) = gelling concentration (fluid mud concentration), \(\rho \) = fluid density, \(\rho_s \) = sediment density, \(k \) = turbulent kinetic energy, \(\varepsilon \) = dissipation rate per unit mass, \(W_s \) = settling velocity, \(W_{s,0} \) = reference settling velocity, \(\nu \) = diffusion coefficient, \(\nu_T \) = eddy diffusivity, \(\sigma_{\varepsilon T} \) = turbulent Prandtl-Schmidt number, \(f \) = Coriolis.

From a sensitivity analysis it appeared that inclusion of the baroclinic pressure gradients did not have a very large effect.
Application
The computations were carried out with and without sediment-fluid interaction (i.e. sediment-induced buoyancy effects in the turbulence model, hindered settling and barotropic pressure effects in the momentum equations), e.g. Winterwerp and Van Kessel (2003) for details. Results of tide-averaged suspended sediment concentrations in the lower layer of the computational grid are presented in Figure 1.

The large differences in suspended sediment concentration result in large differences in computed sediment fluxes (hence siltation rates) in the Maasmond area, as depicted in Table 1. The cross sections at which these fluxes have been computed are indicated in Figure 1. Table 1 shows that the net flux over a tidal cycle through cross section 1, Maasmond mouth, almost triples. This is the result of an increase in both the gross import and gross export, though the effect on the import is the larger of the two. The major differences between the two simulations are found near the bed: in the case of inclusion of sediment-fluid interaction, the concentration profile becomes highly stratified, forming a layer of fluid mud in the harbour basins. It is expected that if non-Newtonian effects in and/or consolidation of the fluid mud layers were accounted for, the difference between the two simulations would become even be larger as gross sediment export would decrease further.

These computations have been performed with an inflow suspended sediment concentration of 100 mg/l at the model boundaries. This is a characteristic value in the Dutch coastal zone in the North Sea for mild winter conditions. For typical summer conditions, with a boundary concentration of 10 to 50 mg/l, the effect of sediment-fluid interaction on the sediment fluxes is 10 % only. As the sediment-fluid interactions are highly non-linear, it may be expected that the increase in sediment flux would increase rapidly (by an order of magnitude) when the suspended sediment concentration at sea increases to several 100 mg/l, typical values in the Dutch coastal zone under storm conditions.

Figure 1 Sediment concentration [g/l] near the bed computed with (left panel) and without (right panel) sediment-fluid interactions. The transect lines refer to Table 1

Conclusions
In summary, we conclude that sediment-driven density currents resulting from highly non-linear sediment-fluid interaction may significantly affect the net sediment fluxes, hence siltation rates, in navigational channels and harbour basins. These density currents generate and feed the fluid mud layers observed in many basins throughout the world.

R&D OUTPUTS: ESTUARY PROCESS RESEARCH PROJECT (ESTPROC) TR3_RELEASE 5.0

107
Under extreme conditions, siltation rates can be expected to become at least an order of magnitude larger than predicted with models that do not account for such sediment-fluid interactions.

Table 1 Water and sediment fluxes for Rotterdam harbour area; see Figure 1 for definition cross sections

<table>
<thead>
<tr>
<th>interact.</th>
<th>cross section</th>
<th>sediment flux [kg/s]</th>
<th>water flux [m³/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tidal net</td>
<td>Gross import</td>
<td>Gross export</td>
</tr>
<tr>
<td>yes</td>
<td>1. Maasmond</td>
<td>884</td>
<td>1503</td>
</tr>
<tr>
<td>yes</td>
<td>2. R’dam Waterway</td>
<td>76</td>
<td>466</td>
</tr>
<tr>
<td>yes</td>
<td>3. Calandkanaal</td>
<td>792</td>
<td>828</td>
</tr>
<tr>
<td>yes</td>
<td>4. Beerkanaal</td>
<td>-404</td>
<td>8.0</td>
</tr>
<tr>
<td>no</td>
<td>1. Maasmond</td>
<td>325</td>
<td>719</td>
</tr>
<tr>
<td>no</td>
<td>2. R’dam Waterway</td>
<td>50</td>
<td>365</td>
</tr>
<tr>
<td>no</td>
<td>3. Calandkanaal</td>
<td>263</td>
<td>307</td>
</tr>
<tr>
<td>no</td>
<td>4. Beerkanaal</td>
<td>-126</td>
<td>4.8</td>
</tr>
</tbody>
</table>

References

2.8.4 EP23 - Algorithm for Stress History (Exposure Correction) on sand sediment threshold (SOES- Paphitis)

Aim To complete by laboratory testing data collection on the influence of exposure of sandy sediments to pre-threshold of sediment motion levels of flow and derive an algorithm to make predictions of the “exposure correction”.

Background
The results of the stress history investigations, where the ‘increase factors’ in the critical shear velocity are plotted against the duration under which the sediment bed was exposed to the investigated pre-threshold velocities, are presented in Figure 1.

Algorithm
Utilising all the data an empirical formula for the calculation of the exposure correction factor (u_{cc}/u_c, where u_{cc} is the corrected critical shear velocity) in the critical shear velocity is derived that includes the duration of exposure (E_D) and the percentage of pre-threshold velocity (u/u_c) as explicit variables. Plotted on Figure 1 are the empirical curves (calculated using Eq. 1) for the pre-threshold velocity conditions investigated; the correlation coefficients of these curves were found to be over 0.83, with p-values of <0.001 at the 95% level of significance.

\[
\frac{u_{cc}}{u_c} = 1.05 \left(1 - 0.01 e^{-0.005 E_D} \right) + \left(0.005 + \frac{u}{u_c} - 0.7 \right) 0.1 \ln(E_D) + 0.06 \left(10^{-7(0.97 \frac{u}{u_c})} \right)
\]

for $0.70 \leq \frac{u}{u_c} \leq 0.95$ and $E_D \leq 120$ min

This formula can be used readily in practical applications, where the sediment bed under investigation has been exposed (for a known duration) to pre-threshold unidirectional currents.

Conclusion
The application of the proposed formulae will provide practitioners with an exposure correction factor (i.e. the critical shear velocity ‘increase factor’), which needs to be applied to the critical shear velocity. This can be done prior to their inclusion in bedload transport formulae.

Validity
The formula is restricted to the conditions under which it has been derived i.e. sand-sized sediments, pre-threshold velocity ranging from 70% to 95% and for duration of exposure less than 120min. The sand grain sizes tested were 0.194 mm, 0.387 mm and 0.774 mm.

More information is presented in the paper by Paphitis and Collins (2005).

Reference
Figure 1 Threshold velocity increase factors plotted against the exposure duration to pre-threshold velocities. The series of curves were defined using Eq. 1 and they represent the different pre-threshold velocities investigated.
2.8.5 EP24 - Algorithm for day-night stability of sandy sediment (SOES – Friend)

Aim This algorithm assesses day/night variations in sediment stability associated with erosion threshold, for sandy intertidal flats based on site measurements.

Method
Sediment stability measurements were made using a Cohesive Strength Meter (CSM) at a sandy intertidal flat station in southern England, over six consecutive day-night emersion periods during a period of relatively high microalgal biomass (mean: 4.4 µg gDW^{-1}) in the spring (Figure 1). Mean grain size was 150 µm (fine sand). The general procedure outlined by Tolhurst et al. (1999) was used for processing the CSM data. The index of biological stabilisation, based upon the ratio of the biotic to abiotic critical threshold of sediment motion was calculated using the algorithm for the objective definition of a biostabilisation index for sandy intertidal flats using the Cohesive Strength Meter (CSM).

Result
Coefficients of biostabilisation for night-time emersion periods (average 16.7) were significantly higher (paired t-test: p = 0.011) than day-time coefficients (average 10.5). This means the sandy sediments were more stable at night than during the day.

Applicability
This result applies to sandy intertidal sediments, similar work has been published for muddy intertidal sediments (Friend et al, 2005). The work for muddy sediments showed that sediments were more stable during the day than at night.

![Figure 1](image_url)

Figure 1 Mean critical erosion thresholds over six consecutive day-night emersion periods on a sandy intertidal flat in southern England

Reference

2.8.6 EP25 - Algorithm for selecting Bed Update strategies in estuary models (WLD – Roelvink)

Aim To compare different bed updating strategies in a simple but realistic test case.

Scientific background
In Roelvink (2004) five methods of morphodynamic updating were discussed:

- ‘Brute force’ where the bed is updated during every transport step
- ‘Tide averaging’ where transport is averaged over tide before taking a bottom step
- ‘Tide averaging with continuity correction’, same as above but with intermediate steps where intra-tidal transport is recomputed based on a simple adjustment of velocities
- ‘RAM’ where tide-averaged transport is recomputed after each bottom step based on a very simple adjustment rule
- ‘Morphological factor’ where the bed updating takes place every timestep but is multiplied by the morphological factor.

Applying various methods on real-life test problems is very time-consuming and not always possible, as not all methods are usually available in a single model system. Therefore a simple test problem has been devised to compare the methods in principle.

Improvement in understanding
The test problem clarifies the effects of the various schemes and their problem areas.

Implementation
Let us consider a tidal channel that is gradually widening over a typical length scale L. The flow diverges during flood (positive direction) and converges during ebb tide. A mean discharge is added. The transport gradient can then be approximated by the transport itself divided by a length scale L, so:

$$\frac{\partial z_x}{\partial t} = -\frac{\partial S_x}{\partial x} \approx -\frac{S_x}{L}$$ \quad (1.1)

Let us now assume that the discharge per unit width through the channel has a mean component \bar{q} and an oscillatory component at the M2 frequency, \tilde{q}. This discharge is not sensitive to the depth h, until the depth becomes so shallow that the flow chooses another channel and the discharge goes to zero. This effect is added by means of a smooth tapering function; the discharge including all effects is now described by:

$$q = \left(\bar{q} + \tilde{q} \cos(\omega t)\right) \left(1 - \exp\left(-\left(\frac{h}{h_{sh}}\right)^2\right)\right)$$ \quad (1.2)

where h_{sh} is a depth scale that governs the tapering of the discharge to zero. We assume that the transport rate S_x is a simple function of the velocity and thus:

$$S_x = a \left(\frac{|u|}{h}\right)^{b-1} = a \left(\frac{|q|}{h}\right)^{b-1} \frac{q}{h}$$ \quad (1.3)
where \(u \) is the flow velocity (= \(q/h \)), \(b \) is the power in the transport formulation and \(a \) the transport scaling coefficient.

With this simple set of formulas we can now test the various time integration schemes. We can do this by integrating equation (1.1) numerically for each of the schemes. The outline of the algorithms used for each scheme are shown below:

Brute force method (N=1) and morphological factor (N>1)

Given:
- Initial depth \(h \)
- Number of time steps \(Nt \)
- Time step \(dt \)
- Tidal period
- Morphological factor \(N \)

For timesteps 1 to \(Nt/N \)
- Compute discharge using (1.2)
- Compute velocity from \(q/h \)
- Compute transport \(Sx \) according to (1.3), multiplied by \(N \)
- Compute transport gradient according to (1.1)
- Compute new bed level and water depth by means of Euler scheme

Tide-averaging with continuity correction

Given:
- Initial depth \(h \)
- Number of time steps within tide \(Nt_{tide} \)
- Number of continuity correction steps \(N_{cont} \)
- Number of morphological steps \(N_{morf} \)
- Time step \(dt \)
- Tidal period

For morphological steps 1 to \(N_{morf} \)
- For time steps 1 to \(Nt_{tide} \)
 - Compute and store discharge rates
 - End full tide loop
- For Continuity Correction steps 1 to \(N_{cont} \)
 - For time steps 1 to \(Nt_{tide} \)
 - Compute velocity from \(q/h \)
 - Compute transport \(Sx \) according to (1.3)
 - End simplified tide loop
 - Average transport \(Sx \)
 - Compute transport gradient according to (1.1)
 - Compute new bed level and water depth by means of Euler scheme
 - End loop continuity correction
- End morphological loop

Tide-averaging with RAM

Given:
- Initial depth \(h \)
- Number of time steps within tide \(Nt_{tide} \)
- Number of intermediate RAM steps
- Number of morphological steps \(N_{morf} \)
- Time step \(dt \)
- Tidal period

For morphological steps 1 to \(N_{morf} \)
For time steps 1 to Ntide
 Compute and store discharge rates
 Compute velocity from q/h
 Compute transport Sx according to (1.3).
End full tide loop
Average transport Sx
Compute coefficients a and b
For RAM steps 1 to Nram
 Compute transport according to simplified relation Sx=a*h^(-b)
 Compute transport gradient according to (1.1)
 Compute new bed level and water depth by means of Euler scheme
End loop RAM
End morphological loop

Limits of applicability
This method is meant to demonstrate principles, not for direct application.

Validation
All methods converge to very similar solutions for small morphological factors, number of intermediate continuity correction steps or intermediate RAM steps.

References
2.8.7 EP26 - Algorithm on Estuarine characteristics (POL – Prandle)

Aim Frameworks of characteristic estuarine values, as functions of depth, D, and tidal amplitude, $\hat{\zeta}$, are illustrated for the following parameters. This summarizes results from a paper to appear in 'Progress in Oceanography'.

Background

The derived assumptions from the analysis are as follows: (see later for definition of symbols):

(a) *tidal current amplitude* \hat{U} indicating a dependency on $\hat{\zeta}^{1/2} \ D^{1/4} \ f^{-1/2}$ in shallow water.

(b) *ratio of friction: inertia terms*, shown to be proportional to $10 \ \hat{\zeta}^{4/7} / D$, the latter providing a demarcation of ‘shallow water’ in terms of friction predominating.

(c) *estuarine length, L*, proportional to $D^{5/4}/(\hat{\zeta}^{5/2})$ with depth increasing axially at a rate $x^{0.8}$

(d) *stratification*, based on both the Simpson-Hunter criteria D/U^3 or on the time for vertical mixing by diffusion D^2/K_z, the latter giving an indication of intra-tidal stratification.

(e) *salinity intrusion, L_I*, proportional to $D^2/f \ U_o \ \hat{U}$ based on four independent approaches.

(f) *bathymetry*, definition of zone bounded by $L_d/L < 1, \ E_x/L < 1$ (E_x tidal excursion) and $D/U^3 > 55 \ m^2 \ s^3$.

(g) *mean sediment concentration*, \overline{C}; time and depth-averaged values for fine sediments, proportional to \hat{U}.

(h) *flushing time*, F_T proportional to L_I / U_o

(i) *In-fill time* I, proportional to $F_T \overline{C}$

Synchronous estuary

Frictional and energy conservation effects can combine in funnel-shaped bathymetry to produce a ‘synchronous estuary’ with constant tidal elevation amplitudes. For such partially-mixed, tidally dominated, estuaries, new theories have been developed and translated into characteristic responses for:

- tidal propagation, saline intrusion and sedimentation.

Moreover, by inter-relating these responses new expressions are derived linking bathymetry to dynamics.

Tidal dynamics – estuarine length

The dynamics of tidal propagation are examined for the particular case of a synchronous estuary with a triangular section and a predominant (M_2) tidal constituent. Incorporating these approximations into the cross-sectionally averaged governing equations, produces, for prescribed values of $\hat{\zeta}$ and D, an estimate of bed slope. Axial integration of this slope enables both the shape and length of the estuary to be determined.
\[
\tan \theta = - \frac{F}{\omega} = \frac{S}{\frac{1}{2}Dk}
\]
(1)

where \(S = \frac{\partial D}{\partial x} \)

\[
\hat{u} = \frac{\zeta \kappa}{\left(\omega^2 + F^2\right)^{\frac{1}{2}}}
\]
(2)

\[
k = \frac{\omega}{\left(\frac{D \kappa}{2}\right)^{\frac{1}{2}}}
\]
(3)

\(u \) is velocity in the \(x \) direction, \(\zeta \) is water level, \(D \) is water depth, \(H \) is the total water depth (\(H = D + \zeta \)), \(f \) is the bed friction coefficient (\(\approx 0.0025 \)), \(B \) is the channel breadth, \(A \) the cross sectional area, \(g \) gravitational acceleration, \(t \) time and \(\theta \) the phase lag of currents to elevation

Utilising the values of \(S \) from eqn (1), the length, \(L \), of an estuary is calculated by successively updating \(S \) as \(D \) reduces along the estuary (assuming a constant value of \(\zeta \)).

By assuming \(F >> \omega \), an equivalent simple analytical solution can be determined:

\[
D = \left(\frac{5}{4} \left(\frac{\hat{\kappa} \cdot 1.46 \cdot f \omega}{(2g)^{\frac{1}{4}}}\right)^{\frac{1}{2}}\right) \left(\frac{(2g)^{\frac{1}{4}}}{(1.46f\omega)^{\frac{1}{2}}}\right)^{\frac{4}{5}} x^{\frac{4}{5}}
\]
(4)

where \(x' = L - x \)

or

\[
L = \frac{D_{o}^{\frac{4}{5}}}{\hat{\kappa}^{\frac{1}{2}}} \frac{4}{5} \frac{(2g)^{\frac{1}{4}}}{(1.46f\omega)^{\frac{1}{2}}} \approx 2350 \frac{D_{o}^{\frac{4}{5}}}{\hat{\kappa}^{\frac{1}{2}}} \quad \text{for } f = 0.0025
\]
(5)

(units m, subscripts \(o \) denote values at the mouth).

Salinity intrusion, length and location

The related dynamics of saline intrusion were examined for the case of a vertically and temporally constant axial salinity gradient. An expression for the length of saline intrusion was derived.

The earlier derivation of tidal current amplitudes enables direct estimation of the Simpson-Hunter (1974) stratification parameter \(D/U^3 \). The results indicate that estuaries with tidal elevation amplitudes \(\hat{\zeta} > 1 \text{m} \) will generally be mixed, exceeding the 55 m2 s3 demarcation separating mixed from stratified conditions.

Prandle (1985) derived the following expression for saline intrusion length, \(L_1 \),
Sea-bed velocities
The following estimates of velocity components at the sea bed were derived:

associated with S_x, $U_{so} = -0.029 \times \frac{g D^2 S_x}{f \bar{U}}$ (7)

associated with depth-mean river flow U_o, $U_{oo} = 0.7 \times U_o$ (8)

A simple hypothesis for the limit of upstream intrusion of salt is the position where these upstream and downstream velocity components balance, i.e. where:

$$L_i = \frac{0.011 D^2}{f \bar{U} U_o} \text{ (m)}$$ (9)

Utilising a derived criterion of minimum landward intrusion and incorporating the earlier derivations for both estuarine length and saline intrusion length, an expression for U_o, the river-flow component of residual velocity at the centre of the intrusion, was derived in terms of the depth, D_i.

$$U_o = \frac{D_i^{1/2}}{333} \text{ m s}^{-1}$$ (10)

The expression indicates values of U_o, the residual component of river flow at the centre of the intrusion, ranging from 0.006 to 0.012 m s$^{-1}$ for D_i from 4 to 16 m. These estimates for U_o are independent of : tidal range , bed friction coefficient and steepness of side slopes . Moreover, these values for U_o accord well with observed values which are invariably around 1 cm s$^{-1}$.

Bathymetry as a function of river flow
These latter analyses were extended further to provide an expression for estuarine depth, D_o, at the estuarine mouth in terms of the river flow and side slope , a , of the triangular cross section.

$$D_o = 12.8 \times (Qa)^{0.4}$$ (11)

Combining this result with eqn (5), the estuarine length, L, is given by:

$$L = 2850 \left(\frac{Qa}{f \zeta} \right)^{1/2}$$ (12)

The results for U_o, eqn (10) and D_o, eqn (11) are independent of both the friction coefficient, f, and the tidal amplitude, ζ . However, the expression for estuarine length , eqn (12) , is dependent on the inverse square root of both of these parameters.
Examination of a UK observational data set indicated that: $0.02 > a > 0.002$, eqn (11) then corresponds to

$$2.68 Q^{0.4} > D_o > 1.07 Q^{0.4}$$

(13)

i.e. an estimate for D_o directly in terms of Q (again independent of either tidal range or bed friction coefficient). Comparison of the associated envelope of D as a function of Q again accords sensibly with observed values. Thus, this study provides a complete description of estuarine bathymetry (i.e. depth, length and axial shape) in terms of Q, ξ and f, i.e. an obvious set of ‘natural’ boundary conditions.

Sedimentation

Erosion formulae generally take the form:

$$ER(t) = \rho \gamma f (U(t) - U_c)^P$$

(14)

For a tidally dominated regime, erosion rate $ER(t)$ is relatively insensitive to either the power P (over the commonly encountered range of 2 to 5) or the critical erosion threshold U_c (for $U_c < 0.5 \bar{U}$). Hence for simplicity we adopt:

$$P = 2, \quad \gamma = 0.0001 \text{ m}^{-1} \text{ s} \quad \text{and} \quad U_c = 0$$

(15)

The corresponding time and depth averaged concentrations are given by

$$C = \gamma \rho f \frac{\hat{U}^2}{2} D \alpha$$

(16)

Estimates of in-fill times

Utilising existing theories on the nature of locally resuspended sediment regimes in tidally dominated regimes, it was shown that significant estuarine siltation is most likely to occur via the entrainment of fine marine sediments. Moreover, the transport of such sediments in estuaries (of the kind considered) approximates that of a conservative tracer such as salt.

For the conditions of $\frac{\partial S}{\partial x} = S_x$ (constant), assumed above, and eq (9) for L_4, we can arrive at an estimate of salinity flushing times,

$$F_T = \frac{0.5 \left(L_1/2 \right)}{U_o} = \frac{0.0013 D^2}{f \hat{U} U_o^2}$$

(17)

Thence by combining theoretical estimates of time and depth averaged sediment concentrations with flushing times arrives at an expression for maximum rates of estuarine in-filling estimated as

$$I = \rho \frac{F_T}{0.69 \bar{C}}$$

(18)
This indicates **minimum** infill times, ranging from around 25 years in shallow estuaries with high tidal ranges up to thousands of years in deep estuaries with small tides. Observed capture rates of available marine sediments are generally only a few percent of the total flux, suggesting these minimum in-fill times might be increased by at least an order of magnitude. Hence these results suggest that bathymetric changes over decadal time scales are likely to be minor for all but the shortest and shallowest of estuaries.

Validation
These algorithms are undergoing further validation in project FD2107. They are provided to indicate estuarine behaviour.

See papers at http://www.pol.ac.uk/erp/fd2107/documents.html

Reference

2.9 Biological process parameters that effect stability, erodibility and deposition of sediments

2.9.1 EP27 - Algorithm for Sediment-Biology Interaction (ABP – Jackson)

Aim To determine a method to assist with the preliminary assessment of the importance of sediment parameters in contributing to prediction of species abundance.

Background
The flow diagram below details the proposed algorithm. The accompanying text provides an illustration of how this technique has been applied on the Humber Estuary. More detail on this approach is provided in ABPmer (2004).

Stages 1 and 2
A 3-dimensional hydrodynamic model of the Humber Estuary has been developed by ABPmer and WL | Delft Hydraulics (ABPmer and WL | Delft Hydraulics, 2002). This allows the determination of physical parameters throughout the Humber Estuary in a series of grid cells.

Physical parameters derived from the model include:

- Salinity;
- Current (m/s);
- Bed shear stress (N/m2);
- Elevation (m); and
- Water level.

These values were extracted from the model over three spring and neap tides. An average spring and neap value for each of the parameters was then derived for each grid cell within the model. To avoid distortion the average values were only calculated for the period when the grid cell is covered in water. The elevations for the intertidal area of the grid were refined using LiDAR data.

LiDAR data, at a resolution of 10m x 10m grid cells was available for almost the entire intertidal zone of the Humber Estuary. Each of the model grid cells were therefore divided into a number of smaller cells corresponding to the LiDAR grid. The physical attributes of the numerical model grid were therefore assigned to each of the LiDAR grid cells within each model grid cell. The end result is a model of the intertidal area of the Humber Estuary divided into 10m x 10m grid cells with each cell containing a unique set of physical attributes.

Stage 3
The Humber Estuary was first divided into four broad scale assemblages, each characterised by a suite of intertidal species. This was done based on historic data collected by the Environment Agency (EA).
Stages 4 and 5
The invertebrate composition of three of the identified assemblages were characterised in more detail in 2000 and 2003. The organic content, particle size analysis, erosion thresholds and shear strength were also collected in the field. Once this was completed, physical data was extracted through GIS from model grid cells for all corresponding sampling points and used as described below in a rule-based analysis on selected intertidal species.

Stage 6
Investigation of the relationship between the biotic and abiotic parameters required application of the AnswerTree™ analytical software. This creates classifications displayed in decision trees. As an exploratory analysis tool, it attempts to relate predictive attributes to values of a continuous variable. It also creates rules that can then be tested to predict future events. The resulting trees provide a means of representing hierarchical structure in the data. On the Humber these have been used to define a series of rules for predicting the distribution of intertidal species based on physical parameters.

Stages 7 to 10
The rule-based predictions can then be used to produce predicted abundance maps for a given species in a given estuary. On the Humber Estuary these predicted maps have been compared to observed data to test the predictions that have been made. As new data has been collected this has been used to further refine the rules that have been developed.

Reference

Key stages of a rule-based prediction approach

<table>
<thead>
<tr>
<th>Step</th>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Development of a hydrodynamic Model</td>
<td>Development/ Modification of a hydrodynamic Model to permit outputs in a GIS framework. Outputs required include: Salinity, Elevation, Water Levels, Current Speed (m/s), Friction (N/m²)</td>
</tr>
<tr>
<td>2</td>
<td>Refine elevation of intertidal model grid cells</td>
<td>Refine elevation of intertidal model grid cells using data derived from imagery (e.g. LiDAR)</td>
</tr>
<tr>
<td>3</td>
<td>Process existing benthic data</td>
<td>Collate, Analyse and Interpret existing benthic data</td>
</tr>
<tr>
<td>4</td>
<td>Sampling of intertidal sites</td>
<td>Sampling of intertidal sites to characterise species composition</td>
</tr>
<tr>
<td>5</td>
<td>Obtaining physical data from model</td>
<td>Obtaining physical data from model grid cells that correspond to sampling points. Physical data is extracted for each of the grid cells that contain a sampling point</td>
</tr>
<tr>
<td>6</td>
<td>Use Classification Trees to obtain rules</td>
<td>Use Classification Trees to obtain rules that predict the distribution of individual species from physical data</td>
</tr>
<tr>
<td>7</td>
<td>Apply rules to intertidal grid cells</td>
<td>Apply rules to all the intertidal grid cells of the hydrodynamic model to predict species distributions throughout the entire estuary</td>
</tr>
<tr>
<td>8</td>
<td>Assign abundance values to all grid cells</td>
<td>Assign an abundance category to each grid cell and plot distribution maps for each species</td>
</tr>
<tr>
<td>9</td>
<td>Validate the rules (predicted vs actual)</td>
<td>Validate the rules by comparing predicted distribution maps with actual data</td>
</tr>
<tr>
<td>10</td>
<td>Use new data for rule enhancement</td>
<td>Continual process of rule enhancement as new data is collected</td>
</tr>
</tbody>
</table>

Figure 1 Flow diagram for a rule-based approach for predicting species abundance in estuaries
2.9.2 EP28 - Algorithm for biological process parameters that affect stability, erodibility and deposition of sediments (PML – Widdows)

Aim To incorporate the impact of key intertidal biota and biological processes on sediment stability / erodibility and deposition into numerical models of estuarine sediment dynamics and morphology.

Scientific Background
A wide range of biota are known to modify sediment stability / erodibility and sediment deposition rates through a variety of biological processes which characterise two functional groups:- bio-stabilisers and bio-destabilisers. These processes include:-

Biostabilisation	1) Enhanced sediment cohesion (e.g. microphytobenthos)
	2) Filamentous binding (e.g. Cladophora)
	3) Armouring / biofiltration / biodeposition (e.g. mussel beds)
	4) Vegetation inducing attenuation of near-bed flows and waves

Bio-destabilisation	1) Burrowing activity increasing bed roughness and sediment water content (e.g. bivalves)
	2) Bioresuspension (e.g. mysids, Corophium)
	3) Corrasion by saltating shell material

Sediment stability is ultimately dependent on the balance between the bio-stabilisers and the bio-destabilisers and this will vary spatially (e.g. height on shore and along salinity gradient) and temporally (e.g. seasonally and inter-annually).

Improvement in Understanding
Numerical models of estuarine sediment dynamics and morphology need to incorporate biological as well as physical processes in order to represent the natural estuarine environment. Biota can significantly influence near-bed flows, turbulence, thresholds for sediment erosion, erosion rates and deposition rates. For example, biota can alter the erosion rate by > 2 orders of magnitude, particularly when there is a temporal (interannual) shift from bio-stabilised to a bio-destabilised sediment. These changes need to be incorporated into the next generation of models. A summary of results is included in Table 1. A row is included for Spartina but the data is not fully analysed for inclusion in EstProc.
<table>
<thead>
<tr>
<th>Biological process</th>
<th>Species</th>
<th>Density range</th>
<th>$\Delta \bar{U}_{\text{crit}}$</th>
<th>Δ Erosion rate</th>
<th>Δ Sedimentation rate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-stabilisation</td>
<td>Benthic diatoms</td>
<td>10 - 50 µg Chlorophyll a g$^{-1}$</td>
<td>+ 0.15</td>
<td>10-fold reduction</td>
<td>0</td>
<td>Cohesive sediments (mud to mud-sand)</td>
</tr>
<tr>
<td>Bio-stabilisation</td>
<td>Mussels</td>
<td>0 – 2600 m$^{-2}$</td>
<td>0</td>
<td>8-fold reduction</td>
<td>40-fold</td>
<td>Cohesive and non-cohesive sediments</td>
</tr>
<tr>
<td>Bioturbation</td>
<td>Macoma balthica Clam</td>
<td>0 - 1,500 m$^{-2}$</td>
<td>- 0.05</td>
<td>4-fold increase</td>
<td>0</td>
<td>Cohesive sediments (mud to mud-sand) Max density in field 10,000 m$^{-2}$</td>
</tr>
<tr>
<td>Bio-stabilisation</td>
<td>Enteromorpha Macroalga</td>
<td>0 – 100 g dw m$^{-2}$</td>
<td>+0.05</td>
<td>10-fold reduction</td>
<td>1.5-fold</td>
<td>Found on range of sediments but only non-cohesive sediments studied</td>
</tr>
<tr>
<td>Bio-stabilisation</td>
<td>Cladophora Filamentous alga</td>
<td></td>
<td>+ 0.15</td>
<td>10-fold reduction</td>
<td>0</td>
<td>Cohesive mud</td>
</tr>
<tr>
<td>Bio-stabilisation</td>
<td>Spartina anglica Saltmarsh</td>
<td>400 – 1200 stems m$^{-2}$</td>
<td>10-fold reduction</td>
<td>0</td>
<td>Reduced erosion due to 5-fold reduction in near-bed flows</td>
<td></td>
</tr>
<tr>
<td>Bio-resuspension</td>
<td>Neomysis integer Mysid</td>
<td>0 – 2000 m$^{-2}$</td>
<td>- 0.13</td>
<td>4-fold increase</td>
<td>0</td>
<td>Active bio-resuspension of up to 28 g m$^{-2}$ at <0.05 m$^{-1}$ (i.e. no flow induced erosion)</td>
</tr>
</tbody>
</table>

$\Delta \bar{U}_{\text{crit}}$ (m s$^{-1}$) - Expressed relative to a natural undisturbed sediment with minimal biotic influence which has a \bar{U}_{crit} of 0.18 to 0.20 m s$^{-1}$
Implementation
The majority of experimental flume studies have quantified the impact of biota density on the relationship between sediment erodibility and near-bed current velocity or bed shear stress.

In these studies, biota density is expressed as individuals m$^{-2}$, or biomass (g m$^{-2}$), or a proxy for density such as microphytobenthic chlorophyll a (µg g dry$^{-1}$ sediment). Sediment erodibility is expressed in terms of sediment mass eroded (g m$^{-2}$), and/or erosion rate (g m$^{-2}$ s$^{-1}$) and the threshold for erosion, either in terms of critical erosion velocity (U_{crit}; m s$^{-1}$) or threshold of shear-stress for erosion (τ; N m$^{-2}$).

Algorithms

Inputs
- Near-bed current velocity, either depth averaged over 15 cm or U at a height of 0.1m (U_{10}), or bed shear stress (τ_{0}), calculated using ADV to measure the turbulent kinetic energy (TKE).
- Density of biota.

Outputs
- Sediment mass eroded (g m$^{-2}$)
- Erosion rate (g m$^{-2}$ s$^{-1}$)
- Critical erosion velocity (U_{crit}) or critical bed shear stress for erosion (τ_{cr}; N m$^{-2}$)

The non-linear relationships describing the impact of biota density on sediment erodibility in relation to current speed cannot be accurately represented by response surface analysis (primarily due to critical erosion thresholds creating an inflection). Therefore the relationships are simply presented as a series of regression equations for a series of current velocities or bed shear stresses.

Relationship between current speed and bed shear stress (Already presented as algorithm EP15)
The conversion of near-bed current speed (U_{10}) to bed shear stress for relatively smooth mud is described by the following equation:

$$\text{Bed shear stress (Pa)} = 0.4702U_{10}^3 + 1.152U_{10}^2 + 0.1553U_{10} r^2 = 0.99$$

where U_{10} is velocity in m s$^{-1}$ at 10cm above the bed.
This relationship was established in the flume and field using an ADV for measuring currents and bed shear stress (TKE method).

It is important to note that many of the algorithms presented below include the current velocity measured at 10cm above the bed. For application in studies it will be necessary to calculate the velocity at 10cm above the bed directly, or through appropriate correction of velocities measured further away from the bed.

EP28.1) Microphytobenthos / Benthic diatoms
Microphytobenthos have a major influence on the cohesiveness and stability of the sediment.
This is achieved through the production of mucus-like carbohydrates or EPS (extracellular polymeric substances). Their intertidal distribution ranges from below mid-tide to above the mean neap high tide level, and from fully marine to the upper estuary at low salinities (0-1). Microphytobenthos are present throughout the year ranging from 2 µg g\(^{-1}\) dry sediment in the winter to 60 µg g\(^{-1}\) in June (summer). The main effect on sediment stability is through increasing the critical threshold for erosion (i.e. \(u_{crit}\) or \(U_{crit}\)).

Relationship between \(u_{crit}\) and chlorophyll \(a\) concentration – a proxy parameter for microphytobenthic density - has been measured in laboratory and in situ annular flumes by Sutherland et al (1998a,b). It has been consistently demonstrated in other field studies involving flumes.

Critical shear velocity \(u^*\) (m \(s^{-1}\)) = 0.0058 + 0.0001(chl) \(r^2=0.96\)

where chl = concentration of chlorophyll \(a\) in to top 2mm of sediment, measured in µg g\(^{-1}\) dry sediment.

Assuming that \(u^*\) is 3.6% of \(U_{10}\) then there is good agreement between Sutherland et al (1998a,b) and \(U_{crit}\) derived from PML’s annular flume measurements in field studies (Widdows et al. 2000a).

Limitations
The algorithm is dependent on the accuracy of the bed shear stress determinations.

The algorithm is based on fine cohesive sediments, however, a similar relationship is also observed for mud-sand mixtures (Westerscheldt; Widdows et al. 2000a, 2004). In the Westerscheldt the \(U_{crit}\) and \(\tau_b\) values are similar to the fine mud but the mass eroded and erosion rates were higher due to the nature of the sediment.

Validation
Field measurements in various estuaries including the Humber and Blackwater (fine muds), and the Westerscheldt and Wadden Sea (mud-sand mixtures), have consistently shown a significant relationship between \(U_{crit}\) or \(\tau_b\) and chlorophyll \(a\) or carbohydrates (extracellular polymeric substances). Modelling of sediment dynamics over the Skeffling mudflat (Humber) and the Molenplaat tidal flat (Westerscheldt) has demonstrated that biota (microphytobenthos) can play an important role in sediment erosion, transport and deposition (Wood and Widdows, 2002; Widdows et al. 2004). The output from the models showed good agreement with field data, both in terms of SPM and accretion rates.

References

Macoma balthica

Macoma is a small clam that can occur at high densities (>10,000 individuals m\(^{-2}\)) in estuarine sediments ranging from fine mud to mud-sand mixtures. It is a surface deposit feeder, grazing on the microphytobenthos, thereby loosening the surface sediments, increasing bed roughness and water content.

Annular flume studies examined the effect of 5 Macoma densities (0, 250, 500, 1000, 1500 clams m\(^{-2}\)) on sediment mass eroded (g m\(^{-2}\)) at 7 different current speeds (Widdows et al. 1998a). Sediment mass eroded reached a near steady state after 20 minutes at each current speed. Relationships between sediment mass eroded and Macoma density (x as number m\(^{-2}\)) for different current speeds (U\(_{10}\)) are described by the following equations:

\[
\begin{align*}
U_{10} \cdot 0.10 \text{ m s}^{-1} & \quad \text{Mass eroded (g m}^{-2}\text{)} = 3\times10^{-6}x^2 - 0.0015x + 1.5624 \quad r^2=0.998 \\
U_{10} \cdot 0.15 \text{ m s}^{-1} & \quad \text{Mass eroded (g m}^{-2}\text{)} = -1\times10^{-5}x^2 - 0.0536x + 6.774 \quad r^2=0.989 \\
U_{10} \cdot 0.20 \text{ m s}^{-1} & \quad \text{Mass eroded (g m}^{-2}\text{)} = -2\times10^{-5}x^2 - 0.1653x + 86.095 \quad r^2=0.998 \\
U_{10} \cdot 0.25 \text{ m s}^{-1} & \quad \text{Mass eroded (g m}^{-2}\text{)} = -8\times10^{-5}x^2 - 0.3362x + 283.63 \quad r^2=0.977 \\
U_{10} \cdot 0.31 \text{ m s}^{-1} & \quad \text{Mass eroded (g m}^{-2}\text{)} = -0.0002x^2 - 0.5569x + 503.2 \quad r^2=0.975 \\
U_{10} \cdot 0.37 \text{ m s}^{-1} & \quad \text{Mass eroded (g m}^{-2}\text{)} = -0.0001x^2 - 0.5401x + 564.13 \quad r^2=0.986 \\
U_{10} \cdot 0.45 \text{ m s}^{-1} & \quad \text{Mass eroded (g m}^{-2}\text{)} = -0.0002x^2 - 0.5502x + 596.72 \quad r^2=0.986
\end{align*}
\]

Macoma reduced U\(_{\text{crit}}\) by at least 0.05 m s\(^{-1}\) (i.e. 0.15 to 0.10 m s\(^{-1}\)) at all densities and there was no apparent density dependent relationship.

Limitations

The range of Macoma density studied (0-1500 m\(^{-2}\)) was lower than the observed range in the field (0-10,000 m\(^{-2}\)). However, there is evidence that the enhanced sediment resuspension at 1500 Macoma m\(^{-2}\) may be reaching an asymptote and that further destabilisation of the sediment may be limited at higher densities due to the re-working of the whole sediment surface.

This study may have slightly underestimated the full impact of Macoma on sediment stability because the sediment was sieved of macrofauna and allowed to settle /
Consolidate in the flume over a period of 45 days before the beginning of the experiment. The stability of the ‘control’ sediment, without *Macoma* (*U_{crit} = 0.15 \text{ m s}^{-1}\)), was probably slightly lower than natural undisturbed sediment with minimal biotic influence (*U_{crit} = 0.18 \text{ to } 0.20 \text{ m s}^{-1}\)).

Validation

The laboratory derived relationship between *Macoma* density and increased sediment erodibility, measured in terms of lower *U_{crit}* and an increase in erosion rate (Widdows et al. 1998a), has been observed in several field studies (e.g. Humber, Widdows et al. 1998b, 2000b; Westerschelde, Widdows et al. 2000a).

References

EP28.3) Mussels

a) Sediment erodibility

Mussel beds extend from below the low spring tide level up to the mid tide level. Extensive mussel beds represent important biogenic reefs physically protecting the bed from erosion by tidal currents and waves. However, the effectiveness of this armouring depends on the mussel density and the nature of the sediment (Widdows et al. 1998a; 2002b). Experimental flume studies have shown reduced sediment erodibility with increasing mussel density (i.e. surface coverage %) for cohesive muddy sediments.

Annular flume studies examined the effect of 4 mussel densities (0, 10, 50, 100% cover, where 100% cover was equivalent to 2600 mussels m$^{-2}$) on sediment mass eroded (g m$^{-2}$) at 6 different current speeds (Widdows et al. 1998a). Relationships between sediment mass eroded and mussel density (x = % cover) for different current speeds (*U_{10}*) are described by the following equations:

\[
\begin{align*}
\text{Mass eroded (g m}^2\text{)} &= 0.7281e^{0.0028x} & r^2 &= 0.018 \\
\text{Mass eroded (g m}^2\text{)} &= 5.5664e^{-0.0038x} & r^2 &= 0.069 \\
& \text{ (i.e. no significant erosion @ } <0.20 \text{ m s}^{-1}\text{)} \\
\text{Mass eroded (g m}^2\text{)} &= 42.86e^{-0.0147x} & r^2 &= 0.88 \\
\text{Mass eroded (g m}^2\text{)} &= 126.93e^{-0.0164x} & r^2 &= 0.98
\end{align*}
\]
U_{10} @ 0.35 m s^{-1} \quad \text{Mass eroded (g m}^{-2}) = 304.48e^{-0.0195x} \quad r^2=0.94
U_{10} @ 0.40 m s^{-1} \quad \text{Mass eroded (g m}^{-2}) = 501.37e^{-0.0206x} \quad r^2=0.96

Algorithms are for cohesive muds.

b) Biodeposition
Suspension feeders filter small suspended particles (2 – 500 µm) from the water column and convert them into larger mucus bound packages or biodeposits (mm scale) comprised of pseudofaeces and faeces. These biodeposits have a higher settling velocity and sink rapidly to the bed. The gradual accumulation of biodeposits produced by mussel beds usually results in increases in bed height of 1-2 m and this can have a major impact on estuarine morphology.

Mussels are suspension feeders that have high pumping and filtration rates. For example, an individual mussel of 5cm shell length can pump ~ 3 L h^{-1} through its gills at low SPM concentrations (5mg l^{-1}) and this declines linearly with SPM and eventually ceasing pumping at ~ 300 mg l^{-1}. All particles >2µm are filtered from the water with 100% efficiency. However, in polluted estuaries the pumping rates of mussels may be 50% lower (i.e. 1.5 to 2 L h^{-1}).

Mussel filtration rate (mg h^{-1}) = Pumping rate (L h^{-1}) * SPM (mg l^{-1}).

In turbid estuarine water a large proportion of the filtered material is rejected as pseudofaeces (after sorting by the gills and labial palps and before ingestion) and the proportion rejected increases with SPM. This material is deposited to the bed at current speeds (U_{10}) of <0.15 m s^{-1} and resuspended at currents >0.2 m s^{-1}. Mussels settle and grow in dynamic environments with good water exchange, and therefore only a small proportion of the total material biodeposited over slack water will be accumulated in the sediments. The bulk of the material deposited during slack water will be resuspended and transported away by the higher currents (i.e. >0.20 m s^{-1}) on the flood and ebb tides. The proportion of biodeposits trapped and deposited by the mussel bed in the long-term will be dependent on prevailing currents and bed density (no quantitative information available).

Relationship between filtration rates (net biodeposition rate) and mussel bed density (0-1400 individuals m^{-2}) at low current speeds (U_{10}<0.10 m s^{-1}):

\begin{align*}
\text{Filtration or Biodeposition rate (g m}^{-2} h^{-1}) & = 0.042x + 4.3152 \\
\quad r^2 & = 0.99
\end{align*}

where x is the density of individuals m^{-2}.

Biodeposition rates are highly dependent on the density of mussels, at least up to a density of 1400 mussels m^{-2} (Widdows et al. 1998a). Above this density there is evidence of a decline probably due to inhibitory effects on feeding at the high densities (i.e. physical interference due to overcrowding and seston depletion near the bed).
Limitations

Flume experiments have shown more marked non-linear relationship for sediment resuspension as a function of mussel density for sandy sediments (Widdows et al. 2002). This is primarily due to increased scouring and resuspension of sediment and biodeposits around mussel clumps at low density. However, it is not possible to derive an equation with an adequate fit to represent these non-linear relationships.

Validation

The laboratory derived relationships between mussel density and sediment erodibility for both cohesive and non-cohesive sediments are consistent with field observations (Humber and Exmouth) of increased erosion and scouring at low mussel density in contrast to well protected and elevated beds at high density.

References

EP28.4) Enteromorpha

The macroalga, *Enteromorpha*, forms extensive algal mats on the midshore of many estuaries and is often regarded as a nuisance alga with deleterious ecological consequences. *Enteromorpha* density varies seasonally, growing rapidly during the spring and summer and then dies back during the winter. The growth and persistence of macroalgae in estuaries may be due in part to the positive feedback that it induces. *Enteromorpha* has been shown to lower near-bed flow, thus reducing sediment resuspension and turbidity, which in turn increases light penetration, and this will enhance its growth potential. Experimental flume studies have shown that near-bed flow is reduced by 14% to 46%, and sediment erodibility is reduced from 2 to 10-fold, with increasing *Enteromorpha* density from 10 to 60% (% defined as percentage cover when air exposed). The presence of *Enteromorpha* also significantly enhanced sedimentation rates of fine mud by ~50% at 60% cover.

Annular flume studies quantified the impact of different *Enteromorpha* densities on sediment mass eroded at different flume speeds. The data set has had to be normalised due to the influence of a number of factors that could not be controlled throughout the series of experiments. The studies were carried out during the period from spring to autumn when there were different natural densities from bare sediment (0), 8 g dry mass m⁻², 22 g m⁻² and 106 g m⁻². The highest density was equivalent to ~60% coverage of sediment surface during aerial exposure. Sediment mass eroded increased with increasing flume speed (rpm), and sediment erosion and near-bed flows were significantly reduced with increasing *Enteromorpha* density (Romano et al. 2003). The erodibility of the sediment was also found to vary seasonally. Hence the data has been normalised to sediment mass eroded from bare sediment at near-maximum flume speed (67rpm).
Relationships between sediment mass eroded at different *Enteromorpha* densities, normalised to bare sediment, and expressed relative to flume speed (x; rpm) are described by the following equations:

0 (bare) Mass eroded relative to bare sediment at 67rpm = 2.4E-08x^{4.1928} \quad r^2 = 0.996
8 g m\(^{-2}\) Mass eroded relative to bare sediment at 67rpm = 3E-12x^{6.1691} \quad r^2 = 0.988
22 g m\(^{-2}\) Mass eroded relative to bare sediment at 67rpm = 4E-07x^{3.0149} \quad r^2 = 0.981
106 g m\(^{-2}\) Mass eroded relative to bare sediment at 67rpm = 8E-09x^{3.8128} \quad r^2 = 0.988

The normalisation of the data to bare sediment at 67rpm was equivalent to a sediment mass eroded of 350 g m\(^{-2}\) in July.

Near-bed flows are reduced by the increased drag induced by the *Enteromorpha*. Relationships between flume rpm (range from 8 to 75rpm) and depth averaged current speed (\(\bar{U}\), m s\(^{-1}\)) between 1 and 12 cm above sediment with and without *Enteromorpha* are described by the following equations:

0 (Bare) \(\bar{U} = 0.00522\) (rpm) \quad r^2 = 0.99
8 g m\(^{-2}\) Entero \(\bar{U} = 0.00447\) (rpm) \quad r^2 = 0.97
22 g m\(^{-2}\) Entero \(\bar{U} = 0.00388\) (rpm) \quad r^2 = 0.99
106 g m\(^{-2}\) Entero \(\bar{U} = 0.00279\) (rpm) \quad r^2 = 0.90

For example, at the highest *Enteromorpha* density (106 g m\(^{-2}\)) currents were reduced by 46% and the bed erosion was reduced by 90% at the high flows (67 rpm).

Limitations
The algorithms apply to sandy non-cohesive sediment (125-250 µm). ADV measurements were not available at the time of this study so there are no estimates of shear stress.

Validation
None to date, but consistent with general field observations.

Application
A number of the algorithms described above have been applied in computational models, as described in EstProc Consortium (2004) – see Sections 3.2 and 4.2 of that report.

References

2.9.3 EP29 - Algorithm for the objective definition of a biostabilisation index for sandy intertidal flats using the Cohesive Strength Meter (CSM) (SOES – Friend)

Aim To establish a biostabilisation index for use with measurements made using the Cohesive Strength Meter. [One of the devices for determining the erosion threshold condition for cohesive sediments, Black and Paterson, 1997]

Method
An index of biological stabilisation based upon the ratio of the biotic to abiotic critical threshold of sediment motion, is a useful way of comparing the effect of biostabilisation by animals and plants between different sites and different erosion instruments. For cohesive sediments, a lack of an understanding of the physics of particle erosion and the selection of a suitable abiotic control site mean that indices are relative; as such, they are dependent upon qualitative decisions made by the erosion device operator. For example, indices based upon ‘biofilm’ and ‘non-biofilm’ areas are likely to underestimate the extent of biostabilisation.

For non-cohesive sediments equations are available to describe the critical shear stress for the initiation of motion and the suspension of abiotic sands. *In situ* field measurements can be compared with measurements undertaken in a laboratory flume, using the same sediment after removal of all the organic material. Whilst this approach provides a truly abiotic comparison, determination of initial motion is still somewhat subjective, depending on definitions such as ‘first grain movement’, ‘shear stress at which significant sediment transport occurs’, and ‘shear stress at which 10 or more aggregates simultaneously initiate motion in the field of view’. Furthermore, it is not usual that such studies replicate the seawater temperature and salinity that occur in the field, leading to errors in the calculation of settling velocities.

This algorithm provides an objective method of deriving (biotic/abiotic) biostabilisation coefficients from field data on sandy intertidal flats using the CSM. The method is easily repeatable elsewhere, allowing direct comparison of biostabilisation coefficients between non-cohesive intertidal flats. The general procedure outlined by Tolhurst et al. (1999) should be used for processing CSM data. In addition, by recording the temperature and salinity of the ambient seawater at the time of CSM deployment, and by measuring the mean grain-size of sediment immediately adjacent to the test area, the theoretical abiotic suspension threshold can be calculated, using the equations of Bagnold (1966) and McCave (1971), for the resuspension of sand. Note that the settling velocity equation of Soulsby (1997) should be used in preference to the equations of Gibbs et al. (1971) and Baba and Komar (1981).

References

2.10 Linkages between biological processes and morphology

2.10.1 EP30 - Algorithm for relationship between incident wave energy and marsh edge configuration (CCRU – Moeller)

Aim To provide a quantitative indication of the threshold wave energy dictating the erosional form of the seawards saltmarsh boundary.

Scientific Background
A better understanding of the morphological evolution of estuaries, and the better assessment of the relative importance of human interventions versus natural process-driven change in determining estuarine morphology, requires not only an understanding of estuarine channel dynamics but also of the interlinked intertidal mudflat and saltmarsh systems which characterise estuarine margins. Historical data on the extent of mudflats and saltmarshes within UK estuaries confirms a widespread, progressive loss of these habitats over the last one hundred years. However also contained within some of these records are large-scale oscillations between periods of rapid mudflat accretion and saltmarsh progradation and phases of mudflat lowering and saltmarsh retreat. It is currently unclear (a) how such patterns of mudflat and saltmarsh areal change might be explained, and (b) what controls the varying ‘types’ of erosion (e.g. lateral marsh edge erosion versus internal marsh loss)?

Over the last decade traditional models of estuarine dynamics, based largely on tidal hydrodynamics, have been supplemented by a greater awareness of the importance of wave-tide interactions within estuaries and the role of wind-waves in re-shaping estuarine margins and, through their influence on sediment transport, their affect on estuary-wide sediment budgets and morphological change. Nonetheless the precise nature of the linkages between changes in wind-wave climate and the position of mudflats and saltmarshes remain poorly specified. Various broad correlations have been proposed (e.g. Pye 2000) between changing tidal wetland extent and a range of environmental controls (including changes in sea level and water levels within estuaries, storminess and the prevalence of different weather types and the wave fields associated with them) but these have not been systematically tested either empirically or through mathematical modelling.

However at the *within* estuary scale, considerable progress has been made in understanding the morphodynamic feedbacks between surfaces (often vegetated) and input conditions over a range of space and time scales. At this scale, mudflats and saltmarshes constitute a delicately balanced system between hydrodynamic forcing on the one hand and ecological, sedimentological, and morphological responses on the other. Such intertidal surfaces influence tidal currents and incident waves and significantly dissipate the hydrodynamic energy available for sediment erosion, re-suspension and transport. Knowledge of the feedback mechanisms by which mudflats and vegetated marsh surfaces achieve such energy dissipation, and the thresholds at which these dissipative controls are exceeded, is a key factor in understanding the morphological response of mudflats and marshes to sea-level rise and associated changes in incident wave type/energy. Recent field studies have quantified changes in significant wave heights and total spectral energy across densely vegetated macro-tidal saltmarshes (Moeller et al. 1996, Möller *et al.* 1999, 2002).
Benefits from EstProc
Within the EstProc project, this data has been further analysed to reveal, *inter alia*, broad correlations between incident wave energy and saltmarsh margin type (Möller and Spencer 2002, 2003) showing (Table 1).

Table 1 Relations between maximum observed incident wave energy and saltmarsh – mudflat boundary type at 3 UK East Coast locations in North Norfolk (Stiffkey) and Essex (Tillingham, Bridgewick)

<table>
<thead>
<tr>
<th>Edge Configuration</th>
<th>Maximum observed incident wave energy (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffkey, North Norfolk</td>
<td>smooth transition 277</td>
</tr>
<tr>
<td>Tillingham, Dengie</td>
<td>mud-mounds 464</td>
</tr>
<tr>
<td>Bridgewick, Dengie</td>
<td>cliff 715</td>
</tr>
</tbody>
</table>

Implementation of algorithm
The observed relationship should be used as a guideline and basis for the future determination of more clearly defined hydrodynamic thresholds that mark the transition from one morphological configuration to another.

Limits of applicability
The algorithm is limited in applicability due to the (necessarily) limited extent of data on which it is based. Whilst observations were made near-continuously for a period of at least 12 months at each of the sites, it is possible that it is extreme events, with a return period of less than 1 per year, which are critical in determining morphological change and marsh edge configurations.

Gaps in knowledge
There is a significant gap in our knowledge of the erosion thresholds that once surpassed lead to marsh edge configuration changes. Once a change has been initiated, morphology-process feedbacks become operational and control the further evolution of the marsh/mudflat boundary. Further studies aimed at better defining these thresholds are thus critical.

References

Smooth transition topography, Stiffkey
Mud-mound topography, Tillingham

Cliff topography, Bridgewick
2.10.2 EP31 - Algorithm for relationship between saltmarsh accretion, distance from creek and surface elevation in minerogenic marshes (CCRU – Spencer)

Aim The algorithm is presented to illustrate the different time and space controls on estuarine margins and how different scales of process can be linked.

Scientific Background:

Intertidal surfaces evolve over time under the spatial and temporal (individual tide to inter-annual change) patterns of sedimentation that results from tidal flooding. Whereas short-term sedimentation measurements suggest the key control of distance to feeder creek as the prime control on sedimentation rate (Reed et al. 1999), extended monitoring assigns prime importance to surface elevation (through its control on the number of submergences in the longer term) (Figures 1 and 2).

![Diagram](image)

Figure 1 (A) Five year mean accretion isolines (1986-1991; mm a⁻¹) from extensive network (sites 1-83) of sand layer marker horizons, Hut Marsh, Scolt Head Island, N. Norfolk. (B) Five year mean accretion isolines for saltmarsh surface sites A1-A18 adjacent to Hut Creek (after French and Spencer 1993)
Figure 2 Five year mean accretion plotted against (A) distance to feeder creek and (B) surface elevation

Note: positive relationship of accretion to elevation in area adjacent to creek (sites A1-A18; see Figure 1 for position) and negative relationship at a marsh-wide scale (sites 1-83). (French and Spencer 1993)

Benefits from EstProc

Such studies sit in the EstProc framework of establishing the different time and space controls on estuarine margin processes and contribute to the discussion of linkages between such different scales.

Implementation of algorithm

The observed relationships should be used as a guideline for patterns of sedimentation in saltmarshes dominated by external inputs of mineral sediments delivered by dendritic creek systems. The presentation of data in the figure is illustrative rather than definitive.

Limits of applicability

Patterns of sedimentation and accretion change as marsh surfaces develop from broadly convex surfaces between creek systems relatively low in the tidal frame to horizontal surfaces (or slightly concave surfaces between creek bank levees) on ‘mature’ marshes
relatively high in the tidal frame. Hut Marsh is an example of a mature marsh and patterns of sedimentation and accretion observed in this system should not be transferred to marsh surfaces at earlier stages of development.

At-a-point measurements of surface elevation change using the Sedimentation-Erosion Table (SET) show *inter-annual* variations in elevation change which relate to both sediment supply and surface consolidation processes (Cahoon *et al.* 2000).

The example presented makes it clear that the question is not simply one of declining sedimentation rate away from a source. Many salt marshes on estuarine margins support tidal channels and therefore this case is appropriate in many estuarine settings. The example is illustrative of processes within saltmarshes and therefore relevant to understanding the dynamics of estuarine margins.

Gaps in knowledge

The establishment of sediment volume change through time for whole-marsh systems has yet to be satisfactorily achieved. Knowledge of such volumetric changes are necessary to establish the sediment demand of marsh systems at different stages of development and to investigate whether mature marsh systems will be able to adjust to changing sediment demands consequent upon near-future sea-level rise.

References

APPENDICES
Appendix 1

Project bibliography

The following reports and papers were produced directly with funding from the EstProc project. The outputs are listed by organisation.

HR Wallingford

Proudman Oceanographic Laboratory

University of Plymouth

List of papers either: formally acknowledging EstProc funding or other papers produced within EstProc project duration (2001-2004)

Conference Abstracts:

Manning, A.J., 2002. The effects of turbulence on estuarine flocculation, Key Note Speaker at the International Conference on Sediment Transport in European Estuaries (University of Ferrara, Italy), September 2002.

Reports

Internet Websites

EstProc website link placed of following URL: www.coastalprocesses.org

This is the home page for the School of Earth, Ocean and Environmental Sciences, University of Plymouth’s Coastal Processes Research Group which is headed by Prof. David Huntley.

St Andrews University, Gatty Marine Laboratory

ABP Marine Environmental Research

WL | Delft Hydraulics

Plymouth Marine Laboratory

Uncles, R.J., Stephens, J.A., Harris, C. In press (a). Runoff and tidal influences on the estuarine turbidity maximum of the highly turbid Humber Estuary, UK. Marine Geology.

Uncles, R.J., Stephens, J.A., Harris, C. In press (c). Properties of suspended sediment in the estuarine turbidity maximum of the highly turbid Humber Estuary, UK. Ocean Dynamics.

University of Cambridge, Cambridge Coastal Research Unit

University of Southampton, School of Ocean and Earth Sciences

Digital Hydraulics Holland

Centre for Environment, Fisheries and Aquaculture

Appendix 2

Contact details for EstProc research project team

HR Wallingford
Richard Whitehouse/Richard Soulsby/Mike Dearnaley/Jeremy Spearman/Nigel Tozer/Alison Houghton/ Stephen Grey
Email: r.whitehouse@hrwallingford.co.uk ; rls@hrwallingford.co.uk ; mpd@hrwallingford.co.uk
Tel: +44 (0)1491 835381
www.hrwallingford.co.uk

Proudman Oceanographic Laboratory
David Prandle/Andrew Lane/Judith Wolf
Email: davidprandle@hotmail.co.uk ; ale@pol.ac.uk
Tel: +44 (0)151 795 4800
www.pol.ac.uk

University of Plymouth
Keith Dyer/Andrew Manning
Email: keith-r-dyer@supanet.com ; andymanning@yahoo.com
Tel: + 44 (0)1823 401 125
www.coastalprocesses.org

St Andrews University, Gatty Marine Laboratory
David Paterson/Kevin Black/Emma Defew
Email: d.paterson@st-andrews.ac.uk
Tel: +44 (0)1334 463 467
www.st-andrews.ac.uk/~serg/

ABP Marine Environmental Research
Ian Townend/Paul Norton/John Harris/Chris Jackson/Richard Swift
Email: itownend@abpmer.co.uk ; pnorton@abpmer.co.uk
Tel: +44 (0)2380 711840
www.abpmer.co.uk

WL | Delft Hydraulics
Han Winterwerp/Dano Roelvink/Mindert de Vries/Andries Roelfzema
Email: Han.Winterwerp@wldelft.nl ; mindert.devries@wldelft.nl
Tel: +31 152 858 813
www.wldelft.nl

Plymouth Marine Laboratory
Reg Uncles/John Widdows
Email: rju@pml.ac.uk ; JWID@pml.ac.uk
Tel: +44 (0)1752 633441
www.pml.ac.uk
University of Cambridge, Cambridge Coastal Research Unit
Tom Spencer/Iris Moeller/Roz Turner
Email: ts111@cam.ac.uk ; im10003@cam.ac.uk
Tel: +44 (0) 1223 339775
http://ccru.geog.cam.ac.uk/

University of Southampton, School of Ocean and Earth Sciences
Mike Collins/Doros Paphitis/Patrick Friend
Email: mbc@noc.soton.ac.uk ; plf1@noc.soton.ac.uk
Tel: +44 (0) 23 8059 6666
www.noc.soton.ac.uk

Digital Hydraulics Holland
Leo Holthuijsen/Nico Booij
Email: info@digitalhydraulics.com
Tel: + 31 10 442 4768
www.digitalhydraulics.com

Centre for Environment, Fisheries and Aquaculture
Stefan Bolam/Michaela Schratzberger
Email: s.g.bolam@cefas.co.uk
Tel: +44 (0) 1621 787200
www.cefas.co.uk

Contact information is also held at the project website www.estproc.net